

Welcome to ptera’s documentation!

Contents:

	What is Ptera?

	Getting started
	Install

	Usage

	Guide
	Probing

	Operations

	Selected operators

	Miscellaneous

	Use cases
	Instrumenting external code

	Advanced logging

	Advanced debugging

	Testing

	Testing with Ptera
	Test properties

	Test information flow

	Test for infinite loops

	Test trends

	Test caching

	Reference
	Main API

	List of operators

	ptera.interpret

	ptera.opparse

	ptera.overlay

	ptera.probe

	ptera.selector

	ptera.tags

	ptera.transform

	ptera.utils

Indices and tables

	Index

	Module Index

	Search Page

What is Ptera?

Ptera is a way to instrument code from the outside. More precisely, it allows you to specify a set of variables to watch in an arbitrary Python call graph and manipulate a stream of their values.

For example, the following code will print a = 12 and b = 34, at the moment that the variable a is set.

from ptera import probing

def f():
 a = 12

def g():
 b = 34
 f()

"g(b) > f > a" is a *selector* that selects the variable b in the function g
and the variable a in the function f, with a focus on variable a
with probing("g(b) > f > a") as prb:
 # The following line declares a processing pipeline. It must be declared
 # before the main functionality is called.
 prb.print("a = {a} and b = {b}")

 # When the watched variables are set, the values will go through the pipeline
 # declared previously
 g()

See Probing for more information on the probing syntax.

You can use Ptera to:

	Instrument code that you do not control.

	Collect data across function scopes.

	Perform complex filters and reductions on the stream of values.

	Test complex conditions on a program’s internal state.

Getting started

Install

pip install ptera

Usage

The main API for Ptera is probing(), which is used as a context manager.

Here’s an example involving a fun function [https://en.wikipedia.org/wiki/Collatz_conjecture]. Even though the function returns nothing, we can use Ptera to extract all sorts of interesting things:

from ptera import probing

def collatz(n):
 while n != 1:
 n = (3 * n + 1) if n % 2 else (n // 2)

`collatz > n` means: probe variable `n` in function `collatz`
Every time `n` is set (including when it is given as a parameter)
an event is sent through `prb`
with probing("collatz > n") as prb:
 # Declare one or more pipelines on the data.
 prb["n"].print("n = {}")
 prb["n"].max().print("max(n) = {}")
 prb["n"].count().print("number of steps: {}")

 # We can also ask for all values to be accumulated into a list
 values = prb["n"].accum()

 # Call the function once all the pipelines are set up.
 collatz(2021)

 # Print the values
 print("values =", values)

Output:
n = 2021
...
n = 1
values = [2021, ..., 1]
max(n) = 6064
number of steps: 63

Note that in the example above the max/count are printed after the with block ends (they are triggered when there is no more data, and the stream is ended when the with block ends), which is why print(values) is not the last thing that’s printed.

Guide

Contents

	Probing

	Probe a variable

	Probe the return value

	Probe multiple variables

	Probe across scopes

	Probe sibling calls

	Total probes

	Global probes

	Wrapper probe

	Operations

	Printing

	Subscribe

	Map, filter, reduce

	Overriding values

	Asserts

	Conditional breakpoints

	Selected operators

	Filtering

	Mapping

	Reduction

	Arithmetic reductions

	Wrapping

	Timing

	Debugging

	Miscellaneous

	Meta-variables

	Generic variables

	Selecting based on tags

	Probe methods

	Absolute references

Probing

Probe a variable

To get a stream of the value of the variable named a in the function f, pass the selector "f > a" to probing():

def f(x, y):
 a = x * x
 b = y * y
 return a + b

with probing("f > a").values() as values:
 f(12, 5)

assert values == [{"a": 144}]

The function f should be visible in the scope of the call to probing (alternatively, you can provide an explicit environment as the env argument).

Probe the return value

To probe the return value of f, use the selector f() as result (you can name the result however you like):

def f(x, y):
 return x + y

with probing("f() as result").values() as values:
 f(2, 5)

assert values == [{"result": 7}]

Probe multiple variables

Ptera is not limited to probing a single variable in a function: it can probe several at the same time (this is different from passing more than one selector to probing).

When probing multiple variables at the same time, it is important to understand the concept of focus variable. The focus variable, if present, is the variable that triggers the events in the pipeline when it is assigned to (note that parameters are considered to be “assigned to” at the beginning of the function):

	probing("f(x) > y"): The focus is y, this triggers when y is set. (Probe type: Immediate)

	probing("f(y) > x"): The focus is x, this triggers when x is set. (Probe type: Immediate)

	probing("f(x, y)"): There is no focus, this triggers when f returns. (Probe type: Total – these may be a bit less intuitive, see the section on Total probes but don’t feel like you have to use them)

To wit:

def f():
 x = 1
 y = 2
 x = 3
 y = 4
 x = 5
 return x

Case 1: focus on y
with probing("f(x) > y").values() as values:
 f()

assert values == [
 {"x": 1, "y": 2},
 {"x": 3, "y": 4},
]

Case 2: focus on x
with probing("f(y) > x").values() as values:
 f()

assert values == [
 {"x": 1}, # y is not set yet, so it is not in this entry
 {"x": 3, "y": 2},
 {"x": 5, "y": 4},
]

Case 3: no focus
See the section on total probes
with probing("f(x, y)", raw=True).values() as values:
 f()

assert values[0]["x"].values == [1, 3, 5]
assert values[0]["y"].values == [2, 4]

Note

The selector syntax does not necessarily mirror the syntax of actual function calls. For example, f(x) does not necessarily refer to a parameter of f called x. As shown above, you can put any local variable between the parentheses. You can also probe global/closure variables that are used in the body of f.

Note

The selector f(x, !y) is an alternative syntax for f(x) > y. The exclamation mark denotes the focus variable. There can only be one in a selector.

Probe across scopes

Sometimes you would like to get some context about whatever you are probing, and the context might not be in the same scope: it might be, for example, in the caller. Thankfully, Ptera has you covered.

def outer(n):
 x = 0
 for i in range(n):
 x += inner(i)
 return x

def inner(x):
 a = x * x
 return a + 1

with probing("outer(n) > inner > a").values() as values:
 outer(3)

assert values == [
 {"n": 3, "a": 0},
 {"n": 3, "a": 1},
 {"n": 3, "a": 4},
]

As you can see, this probe gives us the context of what the value of n is in the outer scope, and that context is attached to every entry.

Note

The selector outer > inner > a does not require inner to be called directly within outer. The call can be indirect, for example if outer calls middle, and middle calls inner, the selector will still match. This makes it even more practical, since you can easily capture context quite removed from the focus variable.

Probe sibling calls

Now we’re getting into power features that are a bit more niche, but Ptera goes even beyond probing across caller/callee scopes: it can also attach results from sibling calls!

def main(x):
 return negmul(side(3), side(6))

def side(x):
 return x + 1

def negmul(x, y):
 a = x * y
 return -a

with probing("main(x, side(x as x2), negmul(!a))", raw=True).values() as values:
 main(12)

assert values == [
 {"x": 12, "x2": 6, "a": 28}
]

Here we use the ! notation to indicate the focus variable, but it is not fundamentally different from doing ... > negmul > a. The probe above gives us, all at once:

	The value of x in the main function.

	The latest value of x in side (under a different name, to avoid clashing)

	The value of the local variable a in negmul

Total probes

A probe that does not have a focus variable is a “total” probe. Total probes function differently:

	Instead of triggering when a specific focus variable is set, they trigger when the outermost function in the selector ends.

	Instead of providing the latest values of all the variables, they collect all the values the variables have taken (hence the name “total”).

	Since the default interface of probing assumes there is only one value for each variable in each entry, total probes will fail if multiple values are captured for the same variable in the same entry, unless you pass raw=True to probing. This will cause Capture instances to be provided instead.

For example, if we remove the focus from the previous example (and add raw=True):

def main(x):
 return negmul(side(3), side(6))

def side(x):
 return x + 1

def negmul(x, y):
 a = x * y
 return -a

with probing("main(x, side(x as x2), negmul(a))", raw=True).values() as values:
 main(12)

assert values[0]["x"].values == [12]
assert values[0]["x2"].values == [3, 6]
assert values[0]["a"].values == [28]

In this example, each call to main will produce exactly one event, because main is the outermost call in the selector. You can observe that x2 is associated to two values, because side was called twice.

Note

You can in fact create a total probe that has a focus with probing(selector, probe_type="total"). In this case, it will essentially duplicate the data for the outer scopes for each value of the focus variable.

Global probes

The global_probe() function can be used to set up a probe that remains active for the rest of the program. Unlike probing it is not a context manager.

def f(x):
 a = x * x
 return a

gprb = global_probe("f > a")
gprb.print()

f(4) # prints 16
f(5) # prints 25

gprb.deactivate()

f(6) # prints nothing

Note

Probes can only be activated once, so after calling deactivate you will need to make a new probe if you want to reactivate it.

Note

Reduction operators such as min() or sum() are finalized when the probe exits. With probing, that happens at the end of the with block. With global_probe, that happens either when deactivate is called or when the program exits.

Wrapper probe

Warning

This is a less mature feature, use at your own risk.

A wrapper probe is a probe that has two focuses. On the first focus, it generates an opening event, and on the second focus, it generates a closing event. These events can be fed into a context manager or generator using wrap(), kwrap() (subscribers), or wmap() (operator).

The first focus works as normal and can be specified with !. The second focus is specified with !!. In the example below we compute the elapsed time between a = 1 and b = 2:

def main(x):
 for i in range(1, x + 1):
 a = 1
 time.sleep(i)
 b = 2

def _timeit():
 t0 = time.time()
 yield
 t1 = time.time()
 return t1 - t0

with probing("main(!a, !!b)") as prb:
 times = prb.wmap(_timeit).accum()
 main(3)

print(times) # Approximately [0.1, 0.2, 0.3]

The wmap method takes a generator that yields exactly once. It is called when the first focus is triggered (captured values may be passed as keyword arguments). Then it must yield and will be resumed when the second focus is triggered (yield returns the captured data). The return value becomes the next value of the resulting stream.

The wrap and kwrap functions are similar, but they do not return streams. They work like subscribe and ksubscribe, but you can pass either a generator that yields once or an arbitrary context manager.

You can use meta-variables if needed:

	main(!#enter, !!#exit) can be used to wrap the entire function.

	main(!#loop_i, !!#endloop_i) can be used to wrap each iteration of the for loop that uses an iteration variable named i.

Note

If prb is a stream that contains multiple wrapper probes and you only want to wrap one of them, you can pass the name of the focus variable of its selector as the first argument to wmap.

Important

Wrapper probes work a little like with statements, but not really: if an error occurs between the two focuses, the wrapper probe will not be informed. The second focus will simply not happen and the generator will not be called back (it will just hang somewhere forever, wasting memory).

There is one safe special case: if you use a selector like f(!#enter, #error, !!#exit), it should always complete because the special meta-variable #exit is always emitted when a function ends, even if there is an error. The error, if there is one, will be offered as #error. You can get that from the dictionary returned by yield in the handler you pass to wmap.

Operations

In all of the previous examples, I have used the .values() method to gather all the results into a list. This is a perfectly fine way to use Ptera and it has the upside of being simple and easy to understand. There are however many other ways to interact with the streams produced by probing.

Printing

Use .print(<format>) or .display() to print each element of the stream on its own line.

def f(x):
 y = 0
 for i in range(1, x + 1):
 y = y + x
 return y

with probing("f > y").print("y = {y}"):
 f(3)

Prints:
y = 0
y = 1
y = 3
y = 6

If print is given no arguments it will use plain str() to convert the elements to strings. display() displays dictionaries a bit more nicely.

Subscribe

You can, of course, subscribe arbitrary functions to a probe’s stream. You can do so with:

	The >> operator

	The subscribe method (passes the dictionary as a positional argument)

	The ksubscribe method (passes the dictionary as keyword arguments)

For example:

def f(x):
 y = 0
 for i in range(1, x + 1):
 y = y + x
 return y

with probing("f > y") as prb:
 # 1. The >> operator
 prb >> print

 # 2. The subscribe method
 @prb.subscribe
 def _(data):
 print("subscribe", data)

 # 3. The ksubscribe method
 @prb.ksubscribe
 def _(y):
 print("ksubscribe", y)

 f(3)

Prints:
{"y": 0}
subscribe {"y": 0}
ksubscribe 0
...

Map, filter, reduce

Let’s say you have a sequence and you want to print out the maximum absolute value. You can do it like this:

def f():
 y = 1
 y = -7
 y = 3
 y = 6
 y = -2

with probing("f > y") as prb:
 maximum = prb["y"].map(abs).max()
 maximum.print("The maximum is {}")

 f()

Prints: The maximum is 7

	The [...] notation indexes each element in the stream (you can use it multiple times to get deep into the structure, if you’re probing lists or dictionaries. There is also a .getattr() operator if you want to get deep into arbitrary objects)

	map maps a function to each element, here the absolute value

	min reduces the stream using the minimum function

Note

map is different from subscribe. The pipelines are lazy, so map might not execute if there is no subscriber down the pipeline.

If the stream interface is getting in your way and you would rather get the maximum value as an integer that you can manipulate normally, you have two (pretty much equivalent) options:

With values()
with probing("f > y")["y"].map(abs).max().values() as values:
 f()

assert values == [7]

With accum()
with probing("f > y") as prb:
 maximum = prb["y"].map(abs).max()
 values = maximum.accum()

 f()

assert values == [7]

That same advice goes for pretty much all the other operators.

Overriding values

Using overridable=True, Ptera’s probes are able to override the values of the variables being probed (unless the probe is total; nonlocal variables are also not overridable). For example:

def f(x):
 hidden = 1
 return x + hidden

assert f(10) == 11

with probing("f > hidden", overridable=True) as prb:
 prb.override(2)

 assert f(10) == 12

The argument to override() can also be a function that takes the current value of the stream. Also see koverride().

Warning

override() only overrides the focus variable. Recall that the focus variable is the one to the right of >, or the one prefixed with !.

This is because a Ptera selector is triggered when the focus variable is set, so realistically it is the only one that it makes sense to override.

Be careful, because it is easy to write misleading code:

THIS WILL SET y = x + 1, NOT x
OverridableProbe("f(x) > y")["x"].override(lambda x: x + 1)

Note

override will only work at the end of a synchronous pipe (map/filter are OK, but not e.g. sample)

If the focus variable is the return value of a function (as explained in Probe the return value), override will indeed override that return value.

Note

Operations subscribed to probing(selector, overridable=True) happen before those that are subscribed to probing(selector). If you want a probe to see the values after the override, that probe needs to be the non-overridable type, otherwise it will see the values before the override. You can use both probe types at the same time:

def f():
 return 1

with probing("f() as ret", overridable=True) as oprb:
 with probing("f() as ret") as prb:
 oprb.override(2)

 oprb.print() # will print {"ret": 1} (because concurrent with override)
 prb.print() # will print {"ret": 2} (because after override)

 print(f()) # will print 2

Asserts

The fail() method can be used to raise an exception. If you put it after a filter, you can effectively fail when certain conditions occur. This can be a way to beef up a test suite.

def median(xs):
 # Don't copy this because it's incorrect if the length is even
 return xs[len(xs) // 2]

with probing("median > xs") as prb:
 prb.kfilter(lambda xs: len(xs) == 0).fail("List is empty!")
 prb.kfilter(lambda xs: list(sorted(xs)) != xs).fail("List is not sorted!")

 median([]) # Fails immediately
 median([1, 2, 5, 3, 4]) # Also fails

Note the use of the kfilter() operator, which receives the data as keyword arguments. Whenever it returns False, the corresponding datum is omitted from the stream. An alternative to using kfilter here would be to simply write prb["xs"].filter(...).

Conditional breakpoints

Interestingly, you can use probes to set conditional breakpoints. Modifying the previous example:

def median(xs):
 return xs[len(xs) // 2]

with probing("median > xs") as prb:
 prb.kfilter(lambda xs: list(sorted(xs)) != xs).breakpoint()

 median([1, 2, 5, 3, 4]) # Enters breakpoint
 median([1, 2, 3, 4]) # Does not enter breakpoint

Using this code, you can set a breakpoint in median that is triggered only if the input list is not sorted. The breakpoint will occur wherever in the function the focus variable is set, in this case the beginning of the function since the focus variable is a parameter.

Selected operators

Here is a classification of available operators.

Filtering

	filter(): filter with a function

	kfilter(): filter with a function (keyword arguments)

	where(): filter based on keys and simple conditions

	where_any(): filter based on keys

	keep(): filter based on keys (+drop the rest)

	distinct(): only emit distinct elements

	norepeat(): only emit distinct consecutive elements

	first(): only emit the first element

	last(): only emit the last element

	take(): only emit the first n elements

	take_last(): only emit the last n elements

	skip(): suppress the first n elements

	skip_last(): suppress the last n elements

Mapping

	map(): map with a function

	kmap(): map with a function (keyword arguments)

	augment(): add extra keys using a mapping function

	getitem(): extract value for a specific key

	sole(): extract value from dict of length 1

	as_(): wrap as a dict

Reduction

	reduce(): reduce with a function

	scan(): emit a result at each reduction step

	roll(): reduce using overlapping windows

	kmerge(): merge all dictionaries in the stream

	kscan(): incremental version of kmerge

Arithmetic reductions

Most of these reductions can be called with the scan argument set to True to use scan instead of reduce. scan can also be set to an integer, in which case roll is used.

	average()

	average_and_variance()

	count()

	max()

	min()

	sum()

	variance()

Wrapping

	give.wrap(): give a special key at the beginning and end of a block

	give.wrap_inherit(): give a special key at the beginning and end of a block

	give.inherit(): add default key/values for every give() in the block

	given.wrap(): plug a context manager at the location of a give.wrap

	given.kwrap(): same as wrap, but pass kwargs

Timing

	debounce(): suppress events that are too close in time

	sample(): sample an element every n seconds

	throttle(): emit at most once every n seconds

Debugging

	breakpoint(): set a breakpoint whenever data comes in. Use this with filters.

	tag(): assigns a special word to every entry. Use with breakword.

	breakword(): set a breakpoint on a specific word set by tag, using the BREAKWORD environment variable.

	print(): print out the stream.

	display(): print out the stream (pretty).

	accum(): accumulate into a list.

	values(): accumulate into a list (context manager).

	subscribe(): run a task on every element.

	ksubscribe(): run a task on every element (keyword arguments).

Miscellaneous

Meta-variables

There are a few meta-variables recognized by Ptera that start with a hash sign:

	#enter is triggered immediately when entering a function. For example, if you want to set a breakpoint at the start of a function with no arguments you can use probing("f > #enter").breakpoint().

	#value stands in for the return value of a function. f() as x is sugar for f > #value as x.

	#error stands for the exception raised by the function, if there is one.

	#exit is triggered when exiting a function, both on a normal return and when there is an error.

	#yield is triggered whenever a generator yields.

	#receive stands for the output of yield.

	#loop_X and #endloop_X are triggered respectively at the beginning and end of each iteration of a for X in ...: loop (the meta-variables are named after the iteration variable). If there are multiple iteration variables, you can use any of them. There is no way to differentiate loops that have the same iteration variables.

The #enter and #receive meta-variables both bear the @enter tag (meaning that they are points at which execution might enter the function). You can therefore refer to both using the selector $x::@enter. Conversely, #exit and #yield bear the @exit tag. You can leverage this feature to compute e.g. how much time is spent inside a function or generator.

Generic variables

It is possible to indiscriminately capture all variables from a function, or all variables that have a certain “tag”. Simply prefix a variable with $ to indicate it is generic. When doing so, you will need to set raw=True if you want to be able to access the variable names. For example:

def f(a):
 b = a + 1
 c = b + 1
 d = c + 1
 return d

with probing("f > $x", raw=True) as prb:
 prb.print("{x.name} is {x.value}").

 f(10)

Prints:
a is 10
b is 11
c is 12
d is 13

Note

$x will also pick up global and nonlocal variables, so if for example you use the sum builtin in the function, you will get an entry for sum in the stream. It will not pick up meta-variables such as #value, however.

Selecting based on tags

This feature admittedly clashes with type annotations, but Ptera recognizes a specific kind of annotation on variables:

def f(a):
 b = a + sum([1])
 c: "@Cool" = b + 1
 d: "@Cool & @Hot" = c + 1
 return d

with probing("f > $x:@Cool", raw=True) as prb:
 prb.print("{x.name} is {x.value}")

 f(10)

Prints:
c is 12
d is 13

In the above code, only variables tagged as @Cool will be instrumented. Multiple tags can be combined using the & operator.

Probe methods

Probing methods works as one would expect. When using a selector such as self.f > x, it will be interpreted as cls.f(self = <self>) > x so that it only triggers when it is called on this particular self.

Absolute references

Ptera inspects the locals and globals of the frame in which probing is called in order to figure out what to instrument. In addition to this system, there is a second system whereas each function corresponds to a unique reference. These references always start with /:

global_probe("/xyz.submodule/Klass/method > x")

is essentially equivalent to:

from xyz.submodule import Klass
global_probe("Klass.method > x")

The slashes represent a physical nesting rather than object attributes. For example, /module.submodule/x/y means:

	Go in the file that defines module.submodule

	Enter def x or class x (it will not work if x is imported from elsewhere)

	Within that definition, enter def y or class y

The helper function refstring() can be used to get the absolute reference for a function.

Note

	Unlike the normal notation, the absolute notation bypasses decorators. /module/function will probe the function inside the def function(): ... in module.py, so it will work even if the function was wrapped by a decorator (unless the decorator does not actually call the function).

	Use /module.submodule/func, not /module/submodule/func. The former roughly corresponds to from module.submodule import func and the latter to from module import submodule; func = submodule.func, which can be different in Python. It’s a bit odd, but it works that way to properly address Python quirks.

Use cases

Instrumenting external code

There can be situations where you are interested in something an external library or program is computing, but is not easily available from its interface.

For example, if you are using someone else’s code to train a neural network and are interested in how the training loss evolves, but that information is tucked inside a while loop, that can be a bit annoying to work with.

Instead of modifying the code to log the information you need, you can use Ptera to extract it.

For example, here is an example script to train a model on MNIST with Pytorch that you can download from Pytorch’s main repository:

wget https://raw.githubusercontent.com/pytorch/examples/main/mnist/main.py

If you look at the code [https://github.com/pytorch/examples/blob/main/mnist/main.py#L43] you can see that a loss variable is set in the train function. Let’s do something with it.

Try running the following script instead of main.py (put that script in the same directory as main.py):

from main import main, train
from ptera import probing

if __name__ == "__main__":
 with probing("train > loss") as prb:
 (
 prb["loss"] # Extract the loss variable
 .average(scan=100) # Running average of last 100
 .throttle(1) # Produce at most once per second
 .print("Loss = {}")
)

 # Run the original script within context of the probe
 main()

In addition to the original script’s output, you will now get new output that corresponds to the running average of the last 100 training losses, reported at most once per second.

Tip

If you like the idea of using this for logging data in your own scripts because of how powerful the probe interface is, you certainly can! But you can have the same interface in a more explicit way with the giving [https://giving.readthedocs.io] library, using give/given instead of probing.

Advanced logging

Since probes are defined outside of the code they instrument, they can be used to log certain metrics without littering the main program. These logs can be easily augmented with information from outer scopes, limited using throttling, reduced in order to compute an average/min/max, and so on.

Advanced debugging

Probes have a breakpoint() method. Coupled with operators such as filter(), it is easy to define reusable conditional breakpoints. For example:

from ptera import probing

def f(x):
 y = x * x
 return y

with probing("f > x") as prb:
 prb["x"].filter(lambda x: x == 2).breakpoint()

 f(1)
 f(2) # <- will set a breakpoint at the start
 f(3)

Such breakpoints should work regardless of the IDE you use, and they should be robust to most code changes, short of changing variable and function names.

Using operators like pairwise(), you can also set breakpoints that activate if a variable increases or decreases in value.

Testing

Ptera’s ability to extract arbitrary variables from multiple scopes can be very useful for writing tests that verify conditions about a program or library’s internal state.

See Testing with Ptera for detailed examples.

Testing with Ptera

Ptera is a general instrumentation framework for the inner state of Python programs and can be used to test that certain conditions obtain deep within the code.

For example: perhaps a function only works properly on sorted lists and you want to test that every time it is called, the input is sorted (or some other invariant). Ptera allows you to do this simply, composably, and in a way that is generally easy to debug.

In a nutshell, you can test:

	Properties: test that variable X in function F is sorted, or any other invariant that the code is supposed to keep

	Information flow: test that variable X in function F matches variable Y in function G.

	Infinite loops: limit how many times a function can be called within a test

	Trends: test that variable X monotonically decreases/increases/etc. within function F

	Caching: test that call results that are supposed to be cached are not recomputed

Many of these tests could be done with clever monkey patching, but they are a lot simpler using Ptera, and composable.

Note

If you want to test a particular property in many different situations, for instance through a battery of integration tests, you can abstract it into a fixture and easily apply it to many tests, or even to all tests.

Test properties

Some libraries have to do bookkeeping on data structures, ensuring certain invariants (element types, proper sorting, lack of duplicates, etc.) Ptera can be used to verify these invariances during testing, anywhere that’s relevant. For example, here’s how you could test that a bisect function receives a sorted array:

from ptera import probing

def bisect(arr, key):
 lo = -1
 hi = len(arr)
 while lo < hi - 1:
 mid = lo + (hi - lo) // 2
 if (elem := arr[mid]) > key:
 hi = mid
 else:
 lo = mid
 return lo + 1

def test_bisect_argument_sorted():
 with probing("bisect > arr") as prb:
 # First: set up the pipeline
 (
 prb
 .kfilter(lambda arr: list(sorted(arr)) != arr)
 .fail("Input arr is not sorted")
)

 # Second: call the functionality to test
 something_that_calls_bisect()

The probe: bisect > arr is triggered when the arr variable in the bisect function is set. Since arr is a parameter, that corresponds to the entry of the function.

The pipeline:

	kfilter() runs a function on every entry, with the arguments passed as keyword arguments, so it is important to name the argument arr in this case. It only keeps elements where the return value is truthy. Here it will only keep the arrays that are not sorted.

	fail() raises an exception whenever it receives anything. Because of the kfilter, fail will only get data if we see an array arr that is not properly sorted.

The tested functionality in something_that_calls_bisect must be executed after the pipeline is set up, but it can be arbitrarily complex. When a failure occurs, the traceback will be situated at the beginning of the offending bisect call.

Test information flow

There are many situations where you provide an argument to a top level function and you expect its value to bubble down to subroutines. This can be a source of subtle bugs, especially if these subroutines have default parameters that you forget to pass them along (silent bugs 😱). Oftentimes this could be checked by verifying the program’s expected output, but that can be tricky for very complex programs and it makes the test sensitive to many other bugs.

Ptera can help you verify that the information flow is as you expect it:

def g(x, opt=0):
 return x * opt

def f(x, opt=0):
 return g(x + 1) # BUG: should be g(x + 1, opt=opt)

def test_flow():
 with probing("f(opt as fopt) > g(!opt as gopt)") as prb:
 prb.fail_if_empty()
 prb.kfilter(lambda fopt, gopt: fopt != gopt).fail()

 f(10, opt=11) # Fails!

The probe: f(opt as fopt) > g(!opt as gopt) is triggered when g is called within f, and the opt variable or parameter in g is set.

	The ! denotes the focus variable. When that variable is set, the pipeline is activated.

	Two variables are collected: opt in f which we rename fopt, and opt in g which we rename gopt.

The pipeline:

	fail_if_empty() ensures that the selector is triggered at least once. This is a recommended sanity check to make sure that the test is doing something!

	The kfilter() method will be fed both of our variables as keyword arguments. This means that the parameter names of the lambda must be the same as the variable names.

	kfilter will only produce the elements where fopt and gopt are not the same (where the lambda returns True).

	fail() will raise an exception whenever it receives anything. Because of the kfilter, fail will only get data if fopt and gopt differ (which is the precise error we want the test to catch).

Test for infinite loops

The following test will check that the function f is called no more than a thousand times during the test:

def loopy(i):
 while i != 0:
 f()
 i = i - 1

def test_loopy():
 with probing("f > #enter") as prb:
 prb.skip(1000).fail()

 loopy(-1) # Fails

The probe: f > #enter uses the special variable #enter that is triggered immediately at the start of f. Every time f is called, this pipeline is triggered.

Note

In this example, you could also set a probe on loopy > i. It is up to you to choose what makes the most sense.

The pipeline:

	skip() will throw away the first thousand entries in the pipeline, corresponding to the first 1000 calls to f.

	fail() will fail whenever it sees anything. If f is called less than 1000 times, all calls are skipped and there will be no failure. Otherwise, the 1001st call will trigger a failure.

Of course, this test can be adapted to check that a function is called once or more (use fail_if_empty()), or a specific number of times (count().filter(lambda x: x != expected_count).fail()).

Test trends

Another great use for Ptera is to check for trends in the values of certain variables in the program as it progresses. Perhaps they must be monotonically increasing or decreasing, perhaps they should be convergent, and so on.

For example, let’s say you want to verify that a variable in a loop always goes down:

def loopy(i, step):
 while i != 0:
 f()
 i = i - step

def test_loopy():
 with probing("loopy > i") as prb:
 (
 prb["i"]
 .pairwise()
 .starmap(lambda i1, i2: i2 - i1)
 .filter(lambda x: x >= 0)
 .fail()
)

 loopy(10, 0) # Fails

The probe: loopy > i is triggered when i is set in loopy. Being passed as an argument counts as being set.

The pipeline:

	prb["i"] extracts the field named "i".

	pairwise() pairs consecutive elements. It will transform the sequence (x, y, z, ...) into ((x, y), (y, z), ...). Therefore, after this operator, we have pairs of successive values taken by i.

	starmap() applies a function on each tuple as a list of arguments, so the pairs we just created are passed as two separate argument. We compute the difference between them.

	filter() applies on the differences we just created. Unlike kfilter it does not take the arguments as keyword arguments, just the raw values we have so far.

	fail() will fail as soon as we detect a non-negative difference.

Test caching

In this example, we test that a function is never called twice with the same argument. For example, maybe it computes something expensive, so we want to cache the results, and we want to make sure the cache is properly used.

cache = {}

def _expensive(x):
 return x * x # oof! so expensive

def expensive(x):
 if x in cache:
 return cache[x]
 else:
 # We forget to populate the cache
 return _expensive(x)

def test_expensive():
 with probing("_expensive > x") as prb:
 xs = prb["x"].accum()

 expensive(12)
 expensive(12) # again

 assert len(set(xs)) == len(xs) > 0 # fails

The probe: _expensive > x instruments the argument x of _expensive. It is important to probe the function that unconditionally does the computation in this case.

The pipeline:

	prb["x"] extracts the field named "x".

	accum() creates a (currently empty) list and returns it. Every time the probe is activated, the current value is appended to the list.

	After calling expensive twice, we can look at what’s in the list. Here we could simply check that it only contains one element, but more generally we can check that its distinct elements (set(xs)) are exactly as numerous as the complete list, from which we can conclude that there are no duplicates.

	The > 0 is added for good measure, to make sure we are not testing a dud that never calls _expensive at all.

You can of course do whatever you want with the list returned by accum, which is what makes it very polyvalent. You only have to make sure not to use it until after the probing block concludes, especially if you accumulate the result of a reduction operator like min or average.

Reference

	Main API
	Probing API

	Overlay API

	Low level API

	List of operators

	ptera.interpret

	ptera.opparse

	ptera.overlay

	ptera.probe

	ptera.selector

	ptera.tags

	ptera.transform

	ptera.utils

Main API

This page collates the main API functions. Other reference files contain further details that may or may not be relevant to typical users.

	Probing API

	Overlay API

	Low level API

Probing API

The preferred API to Ptera’s functionality. It is the most powerful.

	probing()

	Context manager for probing

	global_probe()

	Create a global probe

	Probe

	Probe class returned by probing and global_probe

Overlay API

The Overlay API is more low level than the probing API (the latter uses the former under the hood).

	tooled()

	Transform a function to report variable changes

	is_tooled()

	Return whether a function is tooled or not

	autotool()

	Automatically tool inplace all functions a selector refers to

	BaseOverlay

	Simple context manager to apply handlers corresponding to selectors

	Overlay

	A BaseOverlay with extra functionality

	Immediate

	A handler that triggers when the focus variable is set

	Total

	A handler that triggers when the outer scope for a selector ends

Low level API

	select()

	Parse a string into a Selector object

	transform()

	Transform a function to filter its behavior

List of operators

The operators listed here are all available as methods on the Probe objects yielded by probing().

Important

Ptera’s operators come from the giving [https://giving.readthedocs.io] package, which itself derives most of its operators from the rx [https://rxpy.readthedocs.io/en/latest/reference_operators.html] package.

Since most of these operators are defined in different packages, the documentation might not fully match how they are used with Ptera. So, keep this in mind:

	with given() as gv works the same as with probing(...) as prb. They are different streams, but they have the same interface and the same operators are defined on them.

	Anything that is done on a variable named gv also works on a probe.

	The operators defined in the rx package are not originally methods, because they have decided to use a different API. However, Ptera does offer them as methods with the same name. So if you see code such as op = contains(42), that means you can call probe.contains(42) (which, to be clear, is equivalent to probe.pipe(contains(42))).

	
giving.operators.affix(**streams)

	Affix streams as extra keys on an existing stream of dicts.

The affixed streams should have the same length as the main one, so when
affixing a reduction, one should set scan=True, or scan=n.

[image: affix]

Example

obs.where("x", "y").affix(
 minx=obs["x"].min(scan=True),
 xpy=obs["x", "y"].starmap(lambda x, y: x + y),
)

Or:

obs.where("x", "y").affix(
 # o is obs.where("x", "y")
 minx=lambda o: o["x"].min(scan=True),
 xpy=lambda o: o["x", "y"].starmap(lambda x, y: x + y),
)

	Parameters

	streams – A mapping from extra keys to add to the dicts to Observables
that generate the values, or to functions of one argument that will
be called with the main Observable.

	
giving.operators.all(predicate)

	Determines whether all elements of an observable sequence satisfy
a condition.

[image: all]

Example

>>> op = all(lambda value: value.length > 3)

	Parameters

	predicate (Callable[[~_T], bool]) – A function to test each element for a condition.

	Return type

	Callable[[Observable[~_T]], Observable[bool]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing a single element
determining whether all elements in the source sequence pass
the test in the specified predicate.

	
giving.operators.amb(right_source)

	Propagates the observable sequence that reacts first.

[image: amb]

Example

>>> op = amb(ys)

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that surfaces any of the given
sequences, whichever reacted first.

	
giving.operators.as_(key)

	Make a stream of dictionaries using the given key.

For example, [1, 2].as_("x") => [{"x": 1}, {"x": 2}]

[image: as_]

	Parameters

	key – Key under which to generate each element of the stream.

	
giving.operators.as_observable()

	Hides the identity of an observable sequence.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns and observable sequence that hides the identity of the
source sequence.

	
giving.operators.augment(**fns)

	Augment a stream of dicts with new keys.

Each key in fns should be associated to a function that will be called
with the rest of the data as keyword arguments, so the argument names
matter. The results overwrite the old data, if any keys are in common.

Note

The functions passed in fns will be wrapped with
lax_function() if possible.

This means that these functions are considered to have an
implicit **kwargs argument, so that any data they do
not need is ignored.

[{"x": 1, "y": 2}, ...] => [{"x": 1, "y": 2, "z": 3}, ...]
gv.augment(z=lambda x, y: x + y)

[{"lo": 2, "hi": 3}, ...] => [{"lo": 2, "hi": 3, "higher": 9}, ...]
gv.augment(higher=lambda hi: hi * hi)

	Parameters

	fns – A map from new key names to the functions to compute them.

	
giving.operators.average(*, scan=False)

	Produce the average of a stream of values.

[image: average]

[image: average2]

[image: average3]

	Parameters

	
	scan – If True, generate the current average on every element. If a number n,
generate the average on the last n elements.

	seed – First element of the reduction.

	
giving.operators.average_and_variance(*, scan=False)

	Produce the average and variance of a stream of values.

Note

The variance for the first element is always None.

	Parameters

	scan – If True, generate the current average+variance on every element.
If a number n, generate the average+variance on the last n elements.

	
giving.operators.bottom(n=10, key=None, reverse=False)

	Return the bottom n values, sorted in ascending order.

[image: bottom]

bottom may emit less than n elements, if there are
less than n elements in the orginal sequence.

	Parameters

	
	n – The number of bottom entries to return.

	key – The comparison key function to use or a string.

	
giving.operators.buffer(boundaries)

	Projects each element of an observable sequence into zero or
more buffers.

[image: buffer]

Examples

>>> res = buffer(reactivex.interval(1.0))

	Parameters

	boundaries (Observable[Any]) – Observable sequence whose elements denote the
creation and completion of buffers.

	Return type

	Callable[[Observable[~_T]], Observable[List[~_T]]]

	Returns

	A function that takes an observable source and returns an
observable sequence of buffers.

	
giving.operators.buffer_toggle(openings, closing_mapper)

	Projects each element of an observable sequence into zero or
more buffers.

[image: buffer_toggle]

>>> res = buffer_toggle(reactivex.interval(0.5), lambda i: reactivex.timer(i))

	Parameters

	
	openings (Observable[Any]) – Observable sequence whose elements denote the
creation of buffers.

	closing_mapper (Callable[[Any], Observable[Any]]) – A function invoked to define the closing of each
produced buffer. Value from openings Observable that initiated
the associated buffer is provided as argument to the function. The
buffer is closed when one item is emitted or when the observable
completes.

	Return type

	Callable[[Observable[~_T]], Observable[List[~_T]]]

	Returns

	A function that takes an observable source and returns an
observable sequence of windows.

	
giving.operators.buffer_when(closing_mapper)

	Projects each element of an observable sequence into zero or
more buffers.

[image: buffer_when]

Examples

>>> res = buffer_when(lambda: reactivex.timer(0.5))

	Parameters

	closing_mapper (Callable[[], Observable[Any]]) – A function invoked to define the closing of each
produced buffer. A buffer is started when the previous one is
closed, resulting in non-overlapping buffers. The buffer is closed
when one item is emitted or when the observable completes.

	Return type

	Callable[[Observable[~_T]], Observable[List[~_T]]]

	Returns

	A function that takes an observable source and returns an
observable sequence of windows.

	
giving.operators.buffer_with_count(count, skip=None)

	Projects each element of an observable sequence into zero or more
buffers which are produced based on element count information.

[image: buffer_with_count]

Examples

>>> res = buffer_with_count(10)(xs)
>>> res = buffer_with_count(10, 1)(xs)

	Parameters

	
	count (int) – Length of each buffer.

	skip (Optional[int]) – [Optional] Number of elements to skip between
creation of consecutive buffers. If not provided, defaults to
the count.

	Return type

	Callable[[Observable[~_T]], Observable[List[~_T]]]

	Returns

	A function that takes an observable source and returns an
observable sequence of buffers.

	
giving.operators.buffer_with_time(timespan, timeshift=None, scheduler=None)

	Projects each element of an observable sequence into zero or more
buffers which are produced based on timing information.

[image: buffer_with_time]

Examples

>>> # non-overlapping segments of 1 second
>>> res = buffer_with_time(1.0)
>>> # segments of 1 second with time shift 0.5 seconds
>>> res = buffer_with_time(1.0, 0.5)

	Parameters

	
	timespan (Union[timedelta, float]) – Length of each buffer (specified as a float denoting seconds
or an instance of timedelta).

	timeshift (Union[timedelta, float, None]) – [Optional] Interval between creation of consecutive buffers
(specified as a float denoting seconds or an instance of timedelta).
If not specified, the timeshift will be the same as the timespan
argument, resulting in non-overlapping adjacent buffers.

	scheduler (Optional[SchedulerBase]) – [Optional] Scheduler to run the timer on. If not specified,
the timeout scheduler is used

	Return type

	Callable[[Observable[~_T]], Observable[List[~_T]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence of buffers.

	
giving.operators.buffer_with_time_or_count(timespan, count, scheduler=None)

	Projects each element of an observable sequence into a buffer
that is completed when either it’s full or a given amount of time
has elapsed.

[image: buffer_with_time_or_count]

Examples

>>> # 5s or 50 items in an array
>>> res = source._buffer_with_time_or_count(5.0, 50)
>>> # 5s or 50 items in an array
>>> res = source._buffer_with_time_or_count(5.0, 50, Scheduler.timeout)

	Parameters

	
	timespan (Union[timedelta, float]) – Maximum time length of a buffer.

	count (int) – Maximum element count of a buffer.

	scheduler (Optional[SchedulerBase]) – [Optional] Scheduler to run buffering timers on. If
not specified, the timeout scheduler is used.

	Return type

	Callable[[Observable[~_T]], Observable[List[~_T]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence of buffers.

	
giving.operators.catch(handler)

	Continues an observable sequence that is terminated by an
exception with the next observable sequence.

[image: catch]

Examples

>>> op = catch(ys)
>>> op = catch(lambda ex, src: ys(ex))

	Parameters

	handler (Union[Observable[~_T], Callable[[Exception, Observable[~_T]], Observable[~_T]]]) – Second observable sequence used to produce
results when an error occurred in the first sequence, or an
exception handler function that returns an observable sequence
given the error and source observable that occurred in the
first sequence.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	A function taking an observable source and returns an
observable sequence containing the first sequence’s elements,
followed by the elements of the handler sequence in case an
exception occurred.

	
giving.operators.collect_between(start, end, common=None)

	Collect all data between the start and end keys.

Example

with given() as gv:
 gv.collect_between("A", "Z") >> (results := [])
 give(A=1)
 give(B=2)
 give(C=3, D=4, A=5)
 give(Z=6)
 assert results == [{"A": 5, "B": 2, "C": 3, "D": 4, "Z": 6}]

	Parameters

	
	start – The key that marks the beginning of the accumulation.

	end – The key that marks the end of the accumulation.

	common – A key that must be present in all data and must have
the same value in the whole group.

	
giving.operators.combine_latest(*others)

	Merges the specified observable sequences into one observable
sequence by creating a tuple whenever any of the
observable sequences produces an element.

[image: combine_latest]

Examples

>>> obs = combine_latest(other)
>>> obs = combine_latest(obs1, obs2, obs3)

	Return type

	Callable[[Observable[Any]], Observable[Any]]

	Returns

	An operator function that takes an observable sources and
returns an observable sequence containing the result of
combining elements of the sources into a tuple.

	
giving.operators.concat(*sources)

	Concatenates all the observable sequences.

[image: concat]

Examples

>>> op = concat(xs, ys, zs)

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes one or more observable sources and
returns an observable sequence that contains the elements of
each given sequence, in sequential order.

	
giving.operators.contains(value, comparer=None)

	Determines whether an observable sequence contains a specified
element with an optional equality comparer.

[image: contains]

Examples

>>> op = contains(42)
>>> op = contains({ "value": 42 }, lambda x, y: x["value"] == y["value"])

	Parameters

	
	value (~_T) – The value to locate in the source sequence.

	comparer (Optional[Callable[[~_T, ~_T], bool]]) – [Optional] An equality comparer to compare elements.

	Return type

	Callable[[Observable[~_T]], Observable[bool]]

	Returns

	A function that takes a source observable that returns an
observable sequence containing a single element determining
whether the source sequence contains an element that has the
specified value.

	
giving.operators.count(*, predicate=None, scan=False)

	Count operator.

Returns an observable sequence containing a value that represents how many elements in the specified
observable sequence satisfy a condition if provided, else the count of items.

	Parameters

	
	predicate – A function to test each element for a condition.

	scan – If True, generate a running count, if a number n, count the number of elements/matches
in the last n elements.

	
giving.operators.debounce(duetime, scheduler=None)

	Ignores values from an observable sequence which are followed by
another value before duetime.

[image: debounce]

Example

>>> res = debounce(5.0) # 5 seconds

	Parameters

	
	duetime (Union[timedelta, float]) – Duration of the throttle period for each value
(specified as a float denoting seconds or an instance of timedelta).

	scheduler (Optional[SchedulerBase]) – Scheduler to debounce values on.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes the source observable and
returns the debounced observable sequence.

	
giving.operators.default_if_empty(default_value: reactivex.operators._T) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T]], reactivex.observable.observable.Observable[reactivex.operators._T]]

	
giving.operators.default_if_empty() → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T]], reactivex.observable.observable.Observable[Optional[reactivex.operators._T]]]

	Returns the elements of the specified sequence or the specified
value in a singleton sequence if the sequence is empty.

[image: default_if_empty]

Examples

>>> res = obs = default_if_empty()
>>> obs = default_if_empty(False)

	Parameters

	default_value (Optional[Any]) – The value to return if the sequence is empty. If
not provided, this defaults to None.

	Return type

	Callable[[Observable[Any]], Observable[Any]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that contains the specified
default value if the source is empty otherwise, the elements of
the source.

	
giving.operators.delay(duetime, scheduler=None)

	The delay operator.

[image: delay]

Time shifts the observable sequence by duetime. The relative time
intervals between the values are preserved.

Examples

>>> res = delay(timedelta(seconds=10))
>>> res = delay(5.0)

	Parameters

	
	duetime (Union[timedelta, float]) – Relative time, specified as a float denoting seconds or an
instance of timedelta, by which to shift the observable sequence.

	scheduler (Optional[SchedulerBase]) – [Optional] Scheduler to run the delay timers on.
If not specified, the timeout scheduler is used.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	A partially applied operator function that takes the source
observable and returns a time-shifted sequence.

	
giving.operators.delay_subscription(duetime, scheduler=None)

	Time shifts the observable sequence by delaying the
subscription.

[image: delay_subscription]

Example

>>> res = delay_subscription(5.0) # 5s

	Parameters

	
	duetime (Union[datetime, timedelta, float]) – Absolute or relative time to perform the subscription

	at. –

	scheduler (Optional[SchedulerBase]) – Scheduler to delay subscription on.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	A function that take a source observable and returns a
time-shifted observable sequence.

	
giving.operators.delay_with_mapper(subscription_delay=None, delay_duration_mapper=None)

	Time shifts the observable sequence based on a subscription
delay and a delay mapper function for each element.

[image: delay_with_mapper]

Examples

>>> # with mapper only
>>> res = source.delay_with_mapper(lambda x: Scheduler.timer(5.0))
>>> # with delay and mapper
>>> res = source.delay_with_mapper(
 reactivex.timer(2.0), lambda x: reactivex.timer(x)
)

	Parameters

	
	subscription_delay (Union[Observable[Any], Callable[[Any], Observable[Any]], None]) – [Optional] Sequence indicating the delay
for the subscription to the source.

	delay_duration_mapper (Optional[Callable[[~_T], Observable[Any]]]) – [Optional] Selector function to retrieve
a sequence indicating the delay for each given element.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	A function that takes an observable source and returns a
time-shifted observable sequence.

	
giving.operators.dematerialize()

	Dematerialize operator.

Dematerializes the explicit notification values of an
observable sequence as implicit notifications.

	Return type

	Callable[[Observable[Notification[~_T]]], Observable[~_T]]

	Returns

	An observable sequence exhibiting the behavior
corresponding to the source sequence’s notification values.

	
giving.operators.distinct(key_mapper=None, comparer=None)

	Returns an observable sequence that contains only distinct
elements according to the key_mapper and the comparer. Usage of
this operator should be considered carefully due to the maintenance
of an internal lookup structure which can grow large.

[image: distinct]

Examples

>>> res = obs = xs.distinct()
>>> obs = xs.distinct(lambda x: x.id)
>>> obs = xs.distinct(lambda x: x.id, lambda a,b: a == b)

	Parameters

	
	key_mapper (Optional[Callable[[~_T], ~_TKey]]) – [Optional] A function to compute the comparison
key for each element.

	comparer (Optional[Callable[[~_TKey, ~_TKey], bool]]) – [Optional] Used to compare items in the collection.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence only containing the distinct
elements, based on a computed key value, from the source
sequence.

	
giving.operators.distinct_until_changed(key_mapper=None, comparer=None)

	Returns an observable sequence that contains only distinct
contiguous elements according to the key_mapper and the comparer.

[image: distinct_until_changed]

Examples

>>> op = distinct_until_changed();
>>> op = distinct_until_changed(lambda x: x.id)
>>> op = distinct_until_changed(lambda x: x.id, lambda x, y: x == y)

	Parameters

	
	key_mapper (Optional[Callable[[~_T], ~_TKey]]) – [Optional] A function to compute the comparison key
for each element. If not provided, it projects the value.

	comparer (Optional[Callable[[~_TKey, ~_TKey], bool]]) – [Optional] Equality comparer for computed key values.
If not provided, defaults to an equality comparer function.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence only containing the distinct
contiguous elements, based on a computed key value, from the
source sequence.

	
giving.operators.do(observer)

	Invokes an action for each element in the observable sequence
and invokes an action on graceful or exceptional termination of the
observable sequence. This method can be used for debugging,
logging, etc. of query behavior by intercepting the message stream
to run arbitrary actions for messages on the pipeline.

[image: do]

>>> do(observer)

	Parameters

	observer (ObserverBase[~_T]) – Observer

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes the source observable and
returns the source sequence with the side-effecting behavior
applied.

	
giving.operators.do_action(on_next=None, on_error=None, on_completed=None)

	Invokes an action for each element in the observable sequence
and invokes an action on graceful or exceptional termination of the
observable sequence. This method can be used for debugging,
logging, etc. of query behavior by intercepting the message stream
to run arbitrary actions for messages on the pipeline.

[image: do_action]

Examples

>>> do_action(send)
>>> do_action(on_next, on_error)
>>> do_action(on_next, on_error, on_completed)

	Parameters

	
	on_next (Optional[Callable[[~_T], None]]) – [Optional] Action to invoke for each element in the
observable sequence.

	on_error (Optional[Callable[[Exception], None]]) – [Optional] Action to invoke on exceptional
termination of the observable sequence.

	on_completed (Optional[Callable[[], None]]) – [Optional] Action to invoke on graceful
termination of the observable sequence.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes the source observable an
returns the source sequence with the side-effecting behavior
applied.

	
giving.operators.do_while(condition)

	Repeats source as long as condition holds emulating a do while
loop.

[image: do_while]

	Parameters

	condition (Callable[[Observable[~_T]], bool]) – The condition which determines if the source will be
repeated.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An observable sequence which is repeated as long
as the condition holds.

	
giving.operators.element_at(index)

	Returns the element at a specified index in a sequence.

[image: element_at]

Example

>>> res = source.element_at(5)

	Parameters

	index (int) – The zero-based index of the element to retrieve.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that produces the element at
the specified position in the source sequence.

	
giving.operators.element_at_or_default(index, default_value=None)

	Returns the element at a specified index in a sequence or a
default value if the index is out of range.

[image: element_at_or_default]

Example

>>> res = source.element_at_or_default(5)
>>> res = source.element_at_or_default(5, 0)

	Parameters

	
	index (int) – The zero-based index of the element to retrieve.

	default_value (Optional[~_T]) – [Optional] The default value if the index is
outside the bounds of the source sequence.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	A function that takes an observable source and returns an
observable sequence that produces the element at the
specified position in the source sequence, or a default value if
the index is outside the bounds of the source sequence.

	
giving.operators.exclusive()

	Performs a exclusive waiting for the first to finish before
subscribing to another observable. Observables that come in between
subscriptions will be dropped on the floor.

[image: exclusive]

	Return type

	Callable[[Observable[Observable[~_T]]], Observable[~_T]]

	Returns

	An exclusive observable with only the results that
happen when subscribed.

	
giving.operators.expand(mapper)

	Expands an observable sequence by recursively invoking mapper.

	Parameters

	mapper (Callable[[~_T], Observable[~_T]]) – Mapper function to invoke for each produced element,
resulting in another sequence to which the mapper will be
invoked recursively again.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An observable sequence containing all the elements produced

by the recursive expansion.

	
giving.operators.filter(predicate)

	Filters the elements of an observable sequence based on a
predicate.

[image: filter]

Example

>>> op = filter(lambda value: value < 10)

	Parameters

	predicate (Callable[[~_T], bool]) – A function to test each source element for a
condition.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that contains elements from the
input sequence that satisfy the condition.

	
giving.operators.filter_indexed(predicate_indexed=None)

	Filters the elements of an observable sequence based on a
predicate by incorporating the element’s index.

[image: filter_indexed]

Example

>>> op = filter_indexed(lambda value, index: (value + index) < 10)

	Parameters

	predicate – A function to test each source element for a
condition; the second parameter of the function represents
the index of the source element.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that contains elements from the
input sequence that satisfy the condition.

	
giving.operators.finally_action(action)

	Invokes a specified action after the source observable sequence
terminates gracefully or exceptionally.

[image: finally_action]

Example

>>> res = finally_action(lambda: print('sequence ended')

	Parameters

	action (Callable[[], None]) – Action to invoke after the source observable sequence
terminates.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence with the action-invoking
termination behavior applied.

	
giving.operators.find(predicate)

	Searches for an element that matches the conditions defined by
the specified predicate, and returns the first occurrence within
the entire Observable sequence.

[image: find]

	Parameters

	predicate (Callable[[~_T, int, Observable[~_T]], bool]) – The predicate that defines the conditions of the
element to search for.

	Return type

	Callable[[Observable[~_T]], Observable[Optional[~_T]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence with the first element that
matches the conditions defined by the specified predicate, if
found otherwise, None.

	
giving.operators.find_index(predicate)

	Searches for an element that matches the conditions defined by
the specified predicate, and returns an Observable sequence with the
zero-based index of the first occurrence within the entire
Observable sequence.

[image: find_index]

	Parameters

	predicate (Callable[[~_T, int, Observable[~_T]], bool]) – The predicate that defines the conditions of the
element to search for.

	Return type

	Callable[[Observable[~_T]], Observable[Optional[int]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence with the zero-based index of the
first occurrence of an element that matches the conditions
defined by match, if found; otherwise, -1.

	
giving.operators.first(predicate=None)

	Returns the first element of an observable sequence that
satisfies the condition in the predicate if present else the first
item in the sequence.

[image: first]

Examples

>>> res = res = first()
>>> res = res = first(lambda x: x > 3)

	Parameters

	predicate (Optional[Callable[[~_T], bool]]) – [Optional] A predicate function to evaluate for
elements in the source sequence.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	A function that takes an observable source and returns an
observable sequence containing the first element in the
observable sequence that satisfies the condition in the
predicate if provided, else the first item in the sequence.

	
giving.operators.first_or_default(predicate=None, default_value=None)

	Returns the first element of an observable sequence that
satisfies the condition in the predicate, or a default value if no
such element exists.

[image: first_or_default]

Examples

>>> res = first_or_default()
>>> res = first_or_default(lambda x: x > 3)
>>> res = first_or_default(lambda x: x > 3, 0)
>>> res = first_or_default(None, 0)

	Parameters

	
	predicate (Optional[Callable[[~_T], bool]]) – [optional] A predicate function to evaluate for
elements in the source sequence.

	default_value (Optional[~_T]) – [Optional] The default value if no such element
exists. If not specified, defaults to None.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	A function that takes an observable source and returns an
observable sequence containing the first element in the
observable sequence that satisfies the condition in the
predicate, or a default value if no such element exists.

	
giving.operators.flat_map(mapper: Optional[Iterable[reactivex.operators._T2]] = None) → Callable[[reactivex.observable.observable.Observable[Any]], reactivex.observable.observable.Observable[reactivex.operators._T2]]

	
giving.operators.flat_map(mapper: Optional[reactivex.observable.observable.Observable[reactivex.operators._T2]] = None) → Callable[[reactivex.observable.observable.Observable[Any]], reactivex.observable.observable.Observable[reactivex.operators._T2]]

	
giving.operators.flat_map(mapper: Optional[Callable[[reactivex.operators._T1], Iterable[reactivex.operators._T2]]] = None) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T1]], reactivex.observable.observable.Observable[reactivex.operators._T2]]

	
giving.operators.flat_map(mapper: Optional[Callable[[reactivex.operators._T1], reactivex.observable.observable.Observable[reactivex.operators._T2]]] = None) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T1]], reactivex.observable.observable.Observable[reactivex.operators._T2]]

	The flat_map operator.

[image: flat_map]

One of the Following:
Projects each element of an observable sequence to an observable
sequence and merges the resulting observable sequences into one
observable sequence.

Example

>>> flat_map(lambda x: Observable.range(0, x))

Or:
Projects each element of the source observable sequence to the
other observable sequence and merges the resulting observable
sequences into one observable sequence.

Example

>>> flat_map(Observable.of(1, 2, 3))

	Parameters

	mapper (Optional[Any]) – A transform function to apply to each element or an
observable sequence to project each element from the source
sequence onto.

	Return type

	Callable[[Observable[Any]], Observable[Any]]

	Returns

	An operator function that takes a source observable and returns
an observable sequence whose elements are the result of
invoking the one-to-many transform function on each element of
the input sequence.

	
giving.operators.flat_map_indexed(mapper_indexed: Optional[Iterable[reactivex.operators._T2]] = None) → Callable[[reactivex.observable.observable.Observable[Any]], reactivex.observable.observable.Observable[reactivex.operators._T2]]

	
giving.operators.flat_map_indexed(mapper_indexed: Optional[reactivex.observable.observable.Observable[reactivex.operators._T2]] = None) → Callable[[reactivex.observable.observable.Observable[Any]], reactivex.observable.observable.Observable[reactivex.operators._T2]]

	
giving.operators.flat_map_indexed(mapper_indexed: Optional[Callable[[reactivex.operators._T1, int], Iterable[reactivex.operators._T2]]] = None) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T1]], reactivex.observable.observable.Observable[reactivex.operators._T2]]

	
giving.operators.flat_map_indexed(mapper_indexed: Optional[Callable[[reactivex.operators._T1, int], reactivex.observable.observable.Observable[reactivex.operators._T2]]] = None) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T1]], reactivex.observable.observable.Observable[reactivex.operators._T2]]

	The flat_map_indexed operator.

One of the Following:
Projects each element of an observable sequence to an observable
sequence and merges the resulting observable sequences into one
observable sequence.

[image: flat_map_indexed]

Example

>>> source.flat_map_indexed(lambda x, i: Observable.range(0, x))

Or:
Projects each element of the source observable sequence to the
other observable sequence and merges the resulting observable
sequences into one observable sequence.

Example

>>> source.flat_map_indexed(Observable.of(1, 2, 3))

	Parameters

	mapper_indexed (Optional[Any]) – [Optional] A transform function to apply to
each element or an observable sequence to project each
element from the source sequence onto.

	Return type

	Callable[[Observable[Any]], Observable[Any]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence whose elements are the result of
invoking the one-to-many transform function on each element of
the input sequence.

	
giving.operators.flat_map_latest(mapper)

	Projects each element of an observable sequence into a new
sequence of observable sequences by incorporating the element’s
index and then transforms an observable sequence of observable
sequences into an observable sequence producing values only from
the most recent observable sequence.

	Parameters

	mapper – A transform function to apply to each source element.
The second parameter of the function represents the index
of the source element.

	Returns

	An operator function that takes an observable source and
returns an observable sequence whose elements are the result of
invoking the transform function on each element of source
producing an observable of Observable sequences and that at any
point in time produces the elements of the most recent inner
observable sequence that has been received.

	
giving.operators.fork_join(*others)

	Wait for observables to complete and then combine last values
they emitted into a tuple. Whenever any of that observables completes
without emitting any value, result sequence will complete at that moment as well.

[image: fork_join]

Examples

>>> res = fork_join(obs1)
>>> res = fork_join(obs1, obs2, obs3)

	Return type

	Callable[[Observable[Any]], Observable[Tuple[Any, …]]]

	Returns

	An operator function that takes an observable source and
return an observable sequence containing the result
of combining last element from each source in given sequence.

	
giving.operators.format(string, raw=False, skip_missing=False)

	Format an object using a format string.

	If the data is a dict, it is passed as *kwargs to str.format, unless raw=True

	If the data is a tuple, it is passed as *args to str.format, unless raw=True

	Parameters

	
	string – The format string.

	raw – Whether to pass the data as *args or **kwargs if it is a tuple or dict.

	skip_missing – Whether to ignore KeyErrors due to missing entries in the format.

	
giving.operators.getitem(*keys, strict=False)

	Extract one or more keys from a dictionary.

If more than one key is given, a stream of tuples is produced.

[image: getitem]

	Parameters

	
	keys – Names of the keys to index with.

	strict – If true, every element in the stream is required to
contains this key.

	
giving.operators.group_by(key_mapper, element_mapper=None, subject_mapper=None)

	Groups the elements of an observable sequence according to a
specified key mapper function and comparer and selects the
resulting elements by using a specified function.

[image: group_by]

Examples

>>> group_by(lambda x: x.id)
>>> group_by(lambda x: x.id, lambda x: x.name)
>>> group_by(lambda x: x.id, lambda x: x.name, lambda: ReplaySubject())

	Keyword Arguments

	
	key_mapper – A function to extract the key for each element.

	element_mapper – [Optional] A function to map each source
element to an element in an observable group.

	subject_mapper – A function that returns a subject used to initiate
a grouped observable. Default mapper returns a Subject object.

	Return type

	Callable[[Observable[~_T]], Observable[GroupedObservable[~_TKey, ~_TValue]]]

	Returns

	An operator function that takes an observable source and
returns a sequence of observable groups, each of which
corresponds to a unique key value, containing all elements that
share that same key value.

	
giving.operators.group_by_until(key_mapper, element_mapper, duration_mapper, subject_mapper=None)

	Groups the elements of an observable sequence according to a
specified key mapper function. A duration mapper function is used
to control the lifetime of groups. When a group expires, it
receives an OnCompleted notification. When a new element with the
same key value as a reclaimed group occurs, the group will be
reborn with a new lifetime request.

[image: group_by_until]

Examples

>>> group_by_until(lambda x: x.id, None, lambda : reactivex.never())
>>> group_by_until(
 lambda x: x.id, lambda x: x.name, lambda grp: reactivex.never()
)
>>> group_by_until(
 lambda x: x.id,
 lambda x: x.name,
 lambda grp: reactivex.never(),
 lambda: ReplaySubject()
)

	Parameters

	
	key_mapper (Callable[[~_T], ~_TKey]) – A function to extract the key for each element.

	element_mapper (Optional[Callable[[~_T], ~_TValue]]) – A function to map each source element to an element in
an observable group.

	duration_mapper (Callable[[GroupedObservable[~_TKey, ~_TValue]], Observable[Any]]) – A function to signal the expiration of a group.

	subject_mapper (Optional[Callable[[], Subject[~_TValue]]]) – A function that returns a subject used to initiate
a grouped observable. Default mapper returns a Subject object.

	Return type

	Callable[[Observable[~_T]], Observable[GroupedObservable[~_TKey, ~_TValue]]]

	Returns

	An operator function that takes an observable source and
returns a sequence of observable groups, each of which
corresponds to a unique key value, containing all elements that
share that same key value. If a group’s lifetime expires, a new
group with the same key value can be created once an element
with such a key value is encountered.

	
giving.operators.group_join(right, left_duration_mapper, right_duration_mapper)

	Correlates the elements of two sequences based on overlapping
durations, and groups the results.

[image: group_join]

	Parameters

	
	right (Observable[~_TRight]) – The right observable sequence to join elements for.

	left_duration_mapper (Callable[[~_TLeft], Observable[Any]]) – A function to select the duration
(expressed as an observable sequence) of each element of
the left observable sequence, used to determine overlap.

	right_duration_mapper (Callable[[~_TRight], Observable[Any]]) – A function to select the duration
(expressed as an observable sequence) of each element of
the right observable sequence, used to determine overlap.

	Return type

	Callable[[Observable[~_TLeft]], Observable[Tuple[~_TLeft, Observable[~_TRight]]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that contains elements combined into
a tuple from source elements that have an overlapping
duration.

	
giving.operators.group_wrap(name, **conditions)

	Return a stream of observables for wrapped groups.

In this schema, B and E correspond to the messages sent in the enter and exit
phases respectively of the wrap() context manager.

[image: group_wrap]

Example

results = []

@obs.group_wrap().subscribe
def _(obs2):
 obs2["a"].sum() >> results

	Parameters

	
	name – Name of the wrap block to group on.

	conditions – Maps a key to the value it must be associated to in the
dictionary of the wrap statement, or to a predicate function on the
value.

	
giving.operators.ignore_elements()

	Ignores all elements in an observable sequence leaving only the
termination messages.

[image: ignore_elements]

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an empty observable sequence that signals termination,
successful or exceptional, of the source sequence.

	
giving.operators.is_empty()

	Determines whether an observable sequence is empty.

[image: is_empty]

	Return type

	Callable[[Observable[Any]], Observable[bool]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing a single element
determining whether the source sequence is empty.

	
giving.operators.join(right, left_duration_mapper, right_duration_mapper)

	Correlates the elements of two sequences based on overlapping
durations.

[image: join]

	Parameters

	
	right (Observable[~_T2]) – The right observable sequence to join elements for.

	left_duration_mapper (Callable[[Any], Observable[Any]]) – A function to select the duration
(expressed as an observable sequence) of each element of
the left observable sequence, used to determine overlap.

	right_duration_mapper (Callable[[Any], Observable[Any]]) – A function to select the duration
(expressed as an observable sequence) of each element of
the right observable sequence, used to determine overlap.

	Return type

	Callable[[Observable[~_T1]], Observable[Tuple[~_T1, ~_T2]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that contains elements combined
into a tuple from source elements that have an overlapping
duration.

	
giving.operators.keep(*keys, **remap)

	Keep certain dict keys and remap others.

[image: keep]

	Parameters

	
	keys – Keys that must be kept

	remap – Keys that must be renamed

	
giving.operators.kfilter(fn)

	Filter a stream of dictionaries.

Example

[{"x": 1, "y": 2}, {"x": 100, "y": 50}] => [{"x": 100, "y": 50}]
gv.kfilter(lambda x, y: x > y)

	Parameters

	fn – A function that will be called for each element, passing the
element using **kwargs.

Note

If the dict has elements that are not in the function’s
arguments list and the function does not have a **kwargs
argument, these elements will be dropped and no error will
occur.

	
giving.operators.kmap(_fn=None, **_fns)

	Map a dict, passing keyword arguments.

kmap either takes a positional function argument or keyword arguments
serving to build a new dict.

Example

[{"x": 1, "y": 2}] => [3]
gv.kmap(lambda x, y: x + y)

[{"x": 1, "y": 2}] => [{"z": 3}]
gv.kmap(z=lambda x, y: x + y)

	Parameters

	
	_fn – A function that will be called for each element, passing the
element using **kwargs.

Note

If the dict has elements that are not in the function’s
arguments list and the function does not have a **kwargs
argument, these elements will be dropped and no error will
occur.

	_fns – Alternatively, build a new dict with each key associated to
a function with the same interface as fn.

	
giving.operators.kmerge(scan=False)

	Merge the dictionaries in the stream.

[image: kmerge]

[image: kmerge2]

	
giving.operators.kscan()

	Alias for kmerge(scan=True).

	
giving.operators.last(predicate=None)

	The last operator.

Returns the last element of an observable sequence that satisfies
the condition in the predicate if specified, else the last element.

[image: last]

Examples

>>> op = last()
>>> op = last(lambda x: x > 3)

	Parameters

	predicate (Optional[Callable[[~_T], bool]]) – [Optional] A predicate function to evaluate for
elements in the source sequence.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing the last element in
the observable sequence that satisfies the condition in the
predicate.

	
giving.operators.last_or_default() → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T]], reactivex.observable.observable.Observable[Optional[reactivex.operators._T]]]

	
giving.operators.last_or_default(default_value: reactivex.operators._T) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T]], reactivex.observable.observable.Observable[reactivex.operators._T]]

	
giving.operators.last_or_default(default_value: reactivex.operators._T, predicate: Callable[[reactivex.operators._T], bool]) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T]], reactivex.observable.observable.Observable[reactivex.operators._T]]

	The last_or_default operator.

Returns the last element of an observable sequence that satisfies
the condition in the predicate, or a default value if no such
element exists.

[image: last]

Examples

>>> res = last_or_default()
>>> res = last_or_default(lambda x: x > 3)
>>> res = last_or_default(lambda x: x > 3, 0)
>>> res = last_or_default(None, 0)

	Parameters

	
	predicate (Optional[Callable[[~_T], bool]]) – [Optional] A predicate function to evaluate for
elements in the source sequence.

	default_value (Optional[Any]) – [Optional] The default value if no such element
exists. If not specified, defaults to None.

	Return type

	Callable[[Observable[~_T]], Observable[Any]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing the last element in
the observable sequence that satisfies the condition in the
predicate, or a default value if no such element exists.

	
giving.operators.map(mapper=None)

	The map operator.

Project each element of an observable sequence into a new form.

[image: map]

Example

>>> map(lambda value: value * 10)

	Parameters

	mapper (Optional[Callable[[~_T1], ~_T2]]) – A transform function to apply to each source element.

	Return type

	Callable[[Observable[~_T1]], Observable[~_T2]]

	Returns

	A partially applied operator function that takes an observable
source and returns an observable sequence whose elements are
the result of invoking the transform function on each element
of the source.

	
giving.operators.map_indexed(mapper_indexed=None)

	Project each element of an observable sequence into a new form
by incorporating the element’s index.

[image: map_indexed]

Example

>>> ret = map_indexed(lambda value, index: value * value + index)

	Parameters

	mapper_indexed (Optional[Callable[[~_T1, int], ~_T2]]) – A transform function to apply to each source
element. The second parameter of the function represents
the index of the source element.

	Return type

	Callable[[Observable[~_T1]], Observable[~_T2]]

	Returns

	A partially applied operator function that takes an observable
source and returns an observable sequence whose elements are
the result of invoking the transform function on each element
of the source.

	
giving.operators.materialize()

	Materializes the implicit notifications of an observable
sequence as explicit notification values.

	Return type

	Callable[[Observable[~_T]], Observable[Notification[~_T]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing the materialized
notification values from the source sequence.

	
giving.operators.max(*, key=None, comparer=None, scan=False)

	Produce the maximum of a stream of values.

[image: maximum]

	Parameters

	
	key – A key mapping function or a string.

	comparer – A function of two elements that returns -1 if the first is smaller
than the second, 0 if they are equal, 1 if the second is larger.

	scan – If True, generate the current maximum on every element.

	seed – First element of the reduction.

	
giving.operators.merge(*sources, max_concurrent=None)

	Merges an observable sequence of observable sequences into an
observable sequence, limiting the number of concurrent
subscriptions to inner sequences. Or merges two observable
sequences into a single observable sequence.

[image: merge]

Examples

>>> op = merge(max_concurrent=1)
>>> op = merge(other_source)

	Parameters

	max_concurrent (Optional[int]) – [Optional] Maximum number of inner observable
sequences being subscribed to concurrently or the second
observable sequence.

	Return type

	Callable[[Observable[Any]], Observable[Any]]

	Returns

	An operator function that takes an observable source and
returns the observable sequence that merges the elements of the
inner sequences.

	
giving.operators.merge_all()

	The merge_all operator.

Merges an observable sequence of observable sequences into an
observable sequence.

[image: merge_all]

	Return type

	Callable[[Observable[Observable[~_T]]], Observable[~_T]]

	Returns

	A partially applied operator function that takes an observable
source and returns the observable sequence that merges the
elements of the inner sequences.

	
giving.operators.min(*, key=None, comparer=None, scan=False)

	Produce the minimum of a stream of values.

[image: minimum]

	Parameters

	
	key – A key mapping function or a string.

	comparer – A function of two elements that returns -1 if the first is smaller
than the second, 0 if they are equal, 1 if the second is larger.

	scan – If True, generate the current minimum on every element.

	seed – First element of the reduction.

	
giving.operators.multicast() → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T]], reactivex.observable.connectableobservable.ConnectableObservable[reactivex.operators._T]]

	
giving.operators.multicast(subject: reactivex.abc.subject.SubjectBase[reactivex.operators._T]) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T]], reactivex.observable.connectableobservable.ConnectableObservable[reactivex.operators._T]]

	
giving.operators.multicast(*, subject_factory: Callable[[Optional[reactivex.abc.scheduler.SchedulerBase]], reactivex.abc.subject.SubjectBase[reactivex.operators._T]], mapper: Optional[Callable[[reactivex.observable.observable.Observable[reactivex.operators._T]], reactivex.observable.observable.Observable[reactivex.operators._T2]]] = 'None') → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T]], reactivex.observable.observable.Observable[reactivex.operators._T2]]

	Multicasts the source sequence notifications through an
instantiated subject into all uses of the sequence within a mapper
function. Each subscription to the resulting sequence causes a
separate multicast invocation, exposing the sequence resulting from
the mapper function’s invocation. For specializations with fixed
subject types, see Publish, PublishLast, and Replay.

Examples

>>> res = multicast(observable)
>>> res = multicast(
 subject_factory=lambda scheduler: Subject(), mapper=lambda x: x
)

	Parameters

	
	subject_factory (Optional[Callable[[Optional[SchedulerBase]], SubjectBase[~_T]]]) – Factory function to create an intermediate
subject through which the source sequence’s elements will
be multicast to the mapper function.

	subject (Optional[SubjectBase[~_T]]) – Subject to push source elements into.

	mapper (Optional[Callable[[Observable[~_T]], Observable[~_T2]]]) – [Optional] Mapper function which can use the
multicasted source sequence subject to the policies
enforced by the created subject. Specified only if
subject_factory” is a factory function.

	Return type

	Callable[[Observable[~_T]], Union[Observable[~_T2], ConnectableObservable[~_T]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that contains the elements of a
sequence produced by multicasting the source sequence within a
mapper function.

	
giving.operators.observe_on(scheduler)

	Wraps the source sequence in order to run its observer callbacks
on the specified scheduler.

	Parameters

	scheduler (SchedulerBase) – Scheduler to notify observers on.

This only invokes observer callbacks on a scheduler. In case the
subscription and/or unsubscription actions have side-effects
that require to be run on a scheduler, use subscribe_on.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns the source sequence whose observations happen on the
specified scheduler.

	
giving.operators.on_error_resume_next(second)

	Continues an observable sequence that is terminated normally
or by an exception with the next observable sequence.

[image: on_error]

	Keyword Arguments

	second – Second observable sequence used to produce results
after the first sequence terminates.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An observable sequence that concatenates the first and
second sequence, even if the first sequence terminates
exceptionally.

	
giving.operators.pairwise()

	The pairwise operator.

Returns a new observable that triggers on the second and subsequent
triggerings of the input observable. The Nth triggering of the
input observable passes the arguments from the N-1th and Nth
triggering as a pair. The argument passed to the N-1th triggering
is held in hidden internal state until the Nth triggering occurs.

	Return type

	Callable[[Observable[~_T]], Observable[Tuple[~_T, ~_T]]]

	Returns

	An operator function that takes an observable source and
returns an observable that triggers on successive pairs of
observations from the input observable as an array.

	
giving.operators.partition(predicate)

	Returns two observables which partition the observations of the
source by the given function. The first will trigger observations
for those values for which the predicate returns true. The second
will trigger observations for those values where the predicate
returns false. The predicate is executed once for each subscribed
observer. Both also propagate all error observations arising from
the source and each completes when the source completes.

[image: partition]

	Parameters

	
	predicate (Callable[[~_T], bool]) – The function to determine which output Observable

	observation. (will trigger a particular) –

	Return type

	Callable[[Observable[~_T]], List[Observable[~_T]]]

	Returns

	An operator function that takes an observable source and
returns a list of observables. The first triggers when the
predicate returns True, and the second triggers when the
predicate returns False.

	
giving.operators.partition_indexed(predicate_indexed)

	The indexed partition operator.

Returns two observables which partition the observations of the
source by the given function. The first will trigger observations
for those values for which the predicate returns true. The second
will trigger observations for those values where the predicate
returns false. The predicate is executed once for each subscribed
observer. Both also propagate all error observations arising from
the source and each completes when the source completes.

[image: partition_indexed]

	Parameters

	
	predicate – The function to determine which output Observable

	observation. (will trigger a particular) –

	Return type

	Callable[[Observable[~_T]], List[Observable[~_T]]]

	Returns

	A list of observables. The first triggers when the predicate
returns True, and the second triggers when the predicate
returns False.

	
giving.operators.pluck(key)

	Retrieves the value of a specified key using dict-like access (as in
element[key]) from all elements in the Observable sequence.

To pluck an attribute of each element, use pluck_attr.

	Parameters

	key (~_TKey) – The key to pluck.

	Return type

	Callable[[Observable[Dict[~_TKey, ~_TValue]]], Observable[~_TValue]]

	Returns

	An operator function that takes an observable source and
returns a new observable sequence of key values.

	
giving.operators.pluck_attr(prop)

	Retrieves the value of a specified property (using getattr) from
all elements in the Observable sequence.

To pluck values using dict-like access (as in element[key]) on each
element, use pluck.

	Parameters

	property – The property to pluck.

	Return type

	Callable[[Observable[Any]], Observable[Any]]

	Returns

	An operator function that takes an observable source and
returns a new observable sequence of property values.

	
giving.operators.publish() → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T1]], reactivex.observable.connectableobservable.ConnectableObservable[reactivex.operators._T1]]

	
giving.operators.publish(mapper: Callable[[reactivex.observable.observable.Observable[reactivex.operators._T1]], reactivex.observable.observable.Observable[reactivex.operators._T2]]) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T1]], reactivex.observable.observable.Observable[reactivex.operators._T2]]

	The publish operator.

Returns an observable sequence that is the result of invoking the
mapper on a connectable observable sequence that shares a single
subscription to the underlying sequence. This operator is a
specialization of Multicast using a regular Subject.

Example

>>> res = publish()
>>> res = publish(lambda x: x)

	Parameters

	mapper (Optional[Callable[[Observable[~_T1]], Observable[~_T2]]]) – [Optional] Selector function which can use the
multicasted source sequence as many times as needed,
without causing multiple subscriptions to the source
sequence. Subscribers to the given source will receive all
notifications of the source from the time of the
subscription on.

	Return type

	Callable[[Observable[~_T1]], Union[Observable[~_T2], ConnectableObservable[~_T1]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that contains the elements of a
sequence produced by multicasting the source sequence within a
mapper function.

	
giving.operators.publish_value(initial_value: reactivex.operators._T1) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T1]], reactivex.observable.connectableobservable.ConnectableObservable[reactivex.operators._T1]]

	
giving.operators.publish_value(initial_value: reactivex.operators._T1, mapper: Callable[[reactivex.observable.observable.Observable[reactivex.operators._T1]], reactivex.observable.observable.Observable[reactivex.operators._T2]]) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T1]], reactivex.observable.observable.Observable[reactivex.operators._T2]]

	Returns an observable sequence that is the result of invoking
the mapper on a connectable observable sequence that shares a
single subscription to the underlying sequence and starts with
initial_value.

This operator is a specialization of Multicast using a
BehaviorSubject.

Examples

>>> res = source.publish_value(42)
>>> res = source.publish_value(42, lambda x: x.map(lambda y: y * y))

	Parameters

	
	initial_value (~_T1) – Initial value received by observers upon
subscription.

	mapper (Optional[Callable[[Observable[~_T1]], Observable[~_T2]]]) – [Optional] Optional mapper function which can use the
multicasted source sequence as many times as needed,
without causing multiple subscriptions to the source
sequence. Subscribers to the given source will receive
immediately receive the initial value, followed by all
notifications of the source from the time of the
subscription on.

	Return type

	Callable[[Observable[~_T1]], Union[Observable[~_T2], ConnectableObservable[~_T1]]]

	Returns

	An operator function that takes an observable source and returns
an observable sequence that contains the elements of a
sequence produced by multicasting the source sequence within a
mapper function.

	
giving.operators.reduce(accumulator: Callable[[reactivex.operators._TState, reactivex.operators._T], reactivex.operators._TState]) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T]], reactivex.observable.observable.Observable[reactivex.operators._T]]

	
giving.operators.reduce(accumulator: Callable[[reactivex.operators._TState, reactivex.operators._T], reactivex.operators._TState], seed: reactivex.operators._TState) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T]], reactivex.observable.observable.Observable[reactivex.operators._TState]]

	The reduce operator.

Applies an accumulator function over an observable sequence,
returning the result of the aggregation as a single element in the
result sequence. The specified seed value is used as the initial
accumulator value.

For aggregation behavior with incremental intermediate results,
see scan.

[image: reduce]

Examples

>>> res = reduce(lambda acc, x: acc + x)
>>> res = reduce(lambda acc, x: acc + x, 0)

	Parameters

	
	accumulator (Callable[[~_TState, ~_T], ~_TState]) – An accumulator function to be invoked on each
element.

	seed (Union[~_TState, Type[NotSet]]) – Optional initial accumulator value.

	Return type

	Callable[[Observable[~_T]], Observable[Any]]

	Returns

	A partially applied operator function that takes an observable
source and returns an observable sequence containing a single
element with the final accumulator value.

	
giving.operators.ref_count()

	Returns an observable sequence that stays connected to the
source as long as there is at least one subscription to the
observable sequence.

	Return type

	Callable[[ConnectableObservable[~_T]], Observable[~_T]]

	
giving.operators.repeat(repeat_count=None)

	Repeats the observable sequence a specified number of times.
If the repeat count is not specified, the sequence repeats
indefinitely.

[image: repeat]

Examples

>>> repeated = repeat()
>>> repeated = repeat(42)

	Parameters

	
	repeat_count (Optional[int]) – Number of times to repeat the sequence. If not

	provided –

	indefinitely. (repeats the sequence) –

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable sources and
returns an observable sequence producing the elements of the
given sequence repeatedly.

	
giving.operators.replay(buffer_size: Optional[int] = None, window: Optional[Union[datetime.timedelta, float]] = None, *, scheduler: Optional[reactivex.abc.scheduler.SchedulerBase] = 'None') → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T1]], reactivex.observable.connectableobservable.ConnectableObservable[reactivex.operators._T1]]

	
giving.operators.replay(buffer_size: Optional[int] = None, window: Optional[Union[datetime.timedelta, float]] = None, *, mapper: Optional[Callable[[reactivex.observable.observable.Observable[reactivex.operators._T1]], reactivex.observable.observable.Observable[reactivex.operators._T2]]], scheduler: Optional[reactivex.abc.scheduler.SchedulerBase] = 'None') → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T1]], reactivex.observable.observable.Observable[reactivex.operators._T2]]

	The replay operator.

Returns an observable sequence that is the result of invoking the
mapper on a connectable observable sequence that shares a single
subscription to the underlying sequence replaying notifications
subject to a maximum time length for the replay buffer.

This operator is a specialization of Multicast using a
ReplaySubject.

Examples

>>> res = replay(buffer_size=3)
>>> res = replay(buffer_size=3, window=0.5)
>>> res = replay(None, 3, 0.5)
>>> res = replay(lambda x: x.take(6).repeat(), 3, 0.5)

	Parameters

	
	mapper (Optional[Callable[[Observable[~_T1]], Observable[~_T2]]]) – [Optional] Selector function which can use the
multicasted source sequence as many times as needed,
without causing multiple subscriptions to the source
sequence. Subscribers to the given source will receive all
the notifications of the source subject to the specified
replay buffer trimming policy.

	buffer_size (Optional[int]) – [Optional] Maximum element count of the replay
buffer.

	window (Union[timedelta, float, None]) – [Optional] Maximum time length of the replay buffer.

	scheduler (Optional[SchedulerBase]) – [Optional] Scheduler the observers are invoked on.

	Return type

	Callable[[Observable[~_T1]], Union[Observable[~_T2], ConnectableObservable[~_T1]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that contains the elements of a
sequence produced by multicasting the source sequence within a
mapper function.

	
giving.operators.retry(retry_count=None)

	Repeats the source observable sequence the specified number of
times or until it successfully terminates. If the retry count is
not specified, it retries indefinitely.

Examples

>>> retried = retry()
>>> retried = retry(42)

	Parameters

	retry_count (Optional[int]) – [Optional] Number of times to retry the sequence.
If not provided, retry the sequence indefinitely.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An observable sequence producing the elements of the given
sequence repeatedly until it terminates successfully.

	
giving.operators.roll(n, reduce=None, seed=<class 'reactivex.internal.utils.NotSet'>)

	Group the last n elements, giving a sequence of overlapping sequences.

For example, this can be used to compute a rolling average of the 100 last
elements (however, average(scan=100) is better optimized).

op.roll(100, lambda xs: sum(xs) / len(xs))

[image: roll]

	Parameters

	
	n – The number of elements to group together.

	reduce – A function to reduce the group.

It should take five arguments:

	last: The last result.

	add: The element that was just added. It is the last element
in the elements list.

	drop:
The element that was dropped to make room for the
added one. It is not in the elements argument.
If the list of elements is not yet of size n, there is
no need to drop anything and drop is None.

	last_size: The window size on the last invocation.

	current_size: The window size on this invocation.

Defaults to returning the deque of elements directly.

Note

The same reference is returned each time in order to save memory, so it
should be processed immediately.

	seed – The first element of the reduction.

	
giving.operators.sample(sampler, scheduler=None)

	Samples the observable sequence at each interval.

[image: sample]

Examples

>>> res = sample(sample_observable) # Sampler tick sequence
>>> res = sample(5.0) # 5 seconds

	Parameters

	
	sampler (Union[timedelta, float, Observable[Any]]) – Observable used to sample the source observable or time
interval at which to sample (specified as a float denoting
seconds or an instance of timedelta).

	scheduler (Optional[SchedulerBase]) – Scheduler to use only when a time interval is given.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns a sampled observable sequence.

	
giving.operators.scan(accumulator: Callable[[reactivex.operators._T, reactivex.operators._T], reactivex.operators._T]) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T]], reactivex.observable.observable.Observable[reactivex.operators._T]]

	
giving.operators.scan(accumulator: Callable[[reactivex.operators._TState, reactivex.operators._T], reactivex.operators._TState], seed: Union[reactivex.operators._TState, Type[reactivex.internal.utils.NotSet]]) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._T]], reactivex.observable.observable.Observable[reactivex.operators._TState]]

	The scan operator.

Applies an accumulator function over an observable sequence and
returns each intermediate result. The optional seed value is used
as the initial accumulator value. For aggregation behavior with no
intermediate results, see aggregate() or Observable().

[image: scan]

Examples

>>> scanned = source.scan(lambda acc, x: acc + x)
>>> scanned = source.scan(lambda acc, x: acc + x, 0)

	Parameters

	
	accumulator (Callable[[~_TState, ~_T], ~_TState]) – An accumulator function to be invoked on each
element.

	seed (Union[~_TState, Type[NotSet]]) – [Optional] The initial accumulator value.

	Return type

	Callable[[Observable[~_T]], Observable[~_TState]]

	Returns

	A partially applied operator function that takes an observable
source and returns an observable sequence containing the
accumulated values.

	
giving.operators.sequence_equal(second, comparer=None)

	Determines whether two sequences are equal by comparing the
elements pairwise using a specified equality comparer.

[image: scan]

Examples

>>> res = sequence_equal([1,2,3])
>>> res = sequence_equal([{ "value": 42 }], lambda x, y: x.value == y.value)
>>> res = sequence_equal(reactivex.return_value(42))
>>> res = sequence_equal(
 reactivex.return_value({ "value": 42 }), lambda x, y: x.value == y.value)

	Parameters

	
	second (Union[Observable[~_T], Iterable[~_T]]) – Second observable sequence or iterable to compare.

	comparer (Optional[Callable[[~_T, ~_T], bool]]) – [Optional] Comparer used to compare elements of both
sequences. No guarantees on order of comparer arguments.

	Return type

	Callable[[Observable[~_T]], Observable[bool]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that contains a single element
which indicates whether both sequences are of equal length and
their corresponding elements are equal according to the
specified equality comparer.

	
giving.operators.share()

	Share a single subscription among multiple observers.

This is an alias for a composed publish() and ref_count().

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns a new Observable that multicasts (shares) the original
Observable. As long as there is at least one Subscriber this
Observable will be subscribed and emitting data. When all
subscribers have unsubscribed it will unsubscribe from the
source
Observable.

	
giving.operators.single(predicate=None)

	The single operator.

Returns the only element of an observable sequence that satisfies
the condition in the optional predicate, and reports an exception
if there is not exactly one element in the observable sequence.

[image: single]

Example

>>> res = single()
>>> res = single(lambda x: x == 42)

	Parameters

	predicate (Optional[Callable[[~_T], bool]]) – [Optional] A predicate function to evaluate for
elements in the source sequence.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing the single element in
the observable sequence that satisfies the condition in the
predicate.

	
giving.operators.single_or_default(predicate=None, default_value=None)

	Returns the only element of an observable sequence that matches
the predicate, or a default value if no such element exists this
method reports an exception if there is more than one element in
the observable sequence.

[image: single_or_default]

Examples

>>> res = single_or_default()
>>> res = single_or_default(lambda x: x == 42)
>>> res = single_or_default(lambda x: x == 42, 0)
>>> res = single_or_default(None, 0)

	Parameters

	
	predicate (Optional[Callable[[~_T], bool]]) – [Optional] A predicate function to evaluate for
elements in the source sequence.

	default_value (Optional[Any]) – [Optional] The default value if the index is
outside the bounds of the source sequence.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing the single element in
the observable sequence that satisfies the condition in the
predicate, or a default value if no such element exists.

	
giving.operators.single_or_default_async(has_default=False, default_value=None)

	
	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	
giving.operators.skip(count)

	The skip operator.

Bypasses a specified number of elements in an observable sequence
and then returns the remaining elements.

[image: skip]

	Parameters

	count (int) – The number of elements to skip before returning the
remaining elements.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that contains the elements that
occur after the specified index in the input sequence.

	
giving.operators.skip_last(count)

	The skip_last operator.

[image: skip_last]

Bypasses a specified number of elements at the end of an observable
sequence.

This operator accumulates a queue with a length enough to store the
first count elements. As more elements are received, elements are
taken from the front of the queue and produced on the result
sequence. This causes elements to be delayed.

	Parameters

	
	count (int) – Number of elements to bypass at the end of the source

	sequence. –

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing the source sequence
elements except for the bypassed ones at the end.

	
giving.operators.skip_last_with_time(duration, scheduler=None)

	Skips elements for the specified duration from the end of the
observable source sequence.

Example

>>> res = skip_last_with_time(5.0)

This operator accumulates a queue with a length enough to store
elements received during the initial duration window. As more
elements are received, elements older than the specified duration
are taken from the queue and produced on the result sequence. This
causes elements to be delayed with duration.

	Parameters

	
	duration (Union[timedelta, float]) – Duration for skipping elements from the end of the
sequence.

	scheduler (Optional[SchedulerBase]) – Scheduler to use for time handling.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An observable sequence with the elements skipped during the

specified duration from the end of the source sequence.

	
giving.operators.skip_until(other)

	Returns the values from the source observable sequence only
after the other observable sequence produces a value.

[image: skip_until]

	Parameters

	other – The observable sequence that triggers propagation of
elements of the source sequence.

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing the elements of the
source sequence starting from the point the other sequence
triggered propagation.

	
giving.operators.skip_until_with_time(start_time, scheduler=None)

	Skips elements from the observable source sequence until the
specified start time.
Errors produced by the source sequence are always forwarded to the
result sequence, even if the error occurs before the start time.

[image: skip_until]

Examples

>>> res = skip_until_with_time(datetime())
>>> res = skip_until_with_time(5.0)

	Parameters

	start_time (Union[datetime, timedelta, float]) – Time to start taking elements from the source
sequence. If this value is less than or equal to
datetime.utcnow(), no elements will be skipped.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence with the elements skipped
until the specified start time.

	
giving.operators.skip_while(predicate)

	The skip_while operator.

Bypasses elements in an observable sequence as long as a specified
condition is true and then returns the remaining elements. The
element’s index is used in the logic of the predicate function.

[image: skip_while]

Example

>>> skip_while(lambda value: value < 10)

	Parameters

	predicate (Callable[[~_T], bool]) – A function to test each element for a condition; the
second parameter of the function represents the index of
the source element.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that contains the elements from
the input sequence starting at the first element in the linear
series that does not pass the test specified by predicate.

	
giving.operators.skip_while_indexed(predicate)

	Bypasses elements in an observable sequence as long as a
specified condition is true and then returns the remaining
elements. The element’s index is used in the logic of the predicate
function.

[image: skip_while_indexed]

Example

>>> skip_while(lambda value, index: value < 10 or index < 10)

	Parameters

	predicate (Callable[[~_T, int], bool]) – A function to test each element for a condition; the
second parameter of the function represents the index of
the source element.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that contains the elements from
the input sequence starting at the first element in the linear
series that does not pass the test specified by predicate.

	
giving.operators.skip_with_time(duration, scheduler=None)

	Skips elements for the specified duration from the start of the
observable source sequence.

[image: skip_with_time]

	Parameters

	skip_with_time (>>> res =) –

Specifying a zero value for duration doesn’t guarantee no elements
will be dropped from the start of the source sequence. This is a
side-effect of the asynchrony introduced by the scheduler, where
the action that causes callbacks from the source sequence to be
forwarded may not execute immediately, despite the zero due time.

Errors produced by the source sequence are always forwarded to the
result sequence, even if the error occurs before the duration.

	Parameters

	
	duration (Union[timedelta, float]) – Duration for skipping elements from the start of the

	sequence. –

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence with the elements skipped during
the specified duration from the start of the source sequence.

	
giving.operators.slice(start=None, stop=None, step=None)

	The slice operator.

Slices the given observable. It is basically a wrapper around the operators
skip,
skip_last,
take,
take_last and
filter.

[image: slice]

Examples

>>> result = source.slice(1, 10)
>>> result = source.slice(1, -2)
>>> result = source.slice(1, -1, 2)

	Parameters

	
	start (Optional[int]) – First element to take of skip last

	stop (Optional[int]) – Last element to take of skip last

	step (Optional[int]) – Takes every step element. Must be larger than zero

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns a sliced observable sequence.

	
giving.operators.sole(*, keep_key=False, exclude=[])

	Extract values from a stream of dicts with one entry each.

[image: sole]

If, after removing keys from the exclusion set, any dict is empty
or has a length superior to 1, that is an error.

	Parameters

	
	keep_key – If True, return a (key, value) tuple, otherwise only
return the value. Defaults to False.

	exclude – Keys to exclude.

	
giving.operators.some(predicate=None)

	The some operator.

Determines whether some element of an observable sequence
satisfies a condition if present, else if some items are in the
sequence.

[image: some]

Examples

>>> result = source.some()
>>> result = source.some(lambda x: x > 3)

	Parameters

	predicate (Optional[Callable[[~_T], bool]]) – A function to test each element for a condition.

	Return type

	Callable[[Observable[~_T]], Observable[bool]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing a single element
determining whether some elements in the source sequence
pass the test in the specified predicate if given, else if some
items are in the sequence.

	
giving.operators.starmap(mapper: Callable[[reactivex.operators._A, reactivex.operators._B], reactivex.operators._T]) → Callable[[reactivex.observable.observable.Observable[Tuple[reactivex.operators._A, reactivex.operators._B]]], reactivex.observable.observable.Observable[reactivex.operators._T]]

	
giving.operators.starmap(mapper: Callable[[reactivex.operators._A, reactivex.operators._B, reactivex.operators._C], reactivex.operators._T]) → Callable[[reactivex.observable.observable.Observable[Tuple[reactivex.operators._A, reactivex.operators._B, reactivex.operators._C]]], reactivex.observable.observable.Observable[reactivex.operators._T]]

	
giving.operators.starmap(mapper: Callable[[reactivex.operators._A, reactivex.operators._B, reactivex.operators._C, reactivex.operators._D], reactivex.operators._T]) → Callable[[reactivex.observable.observable.Observable[Tuple[reactivex.operators._A, reactivex.operators._B, reactivex.operators._C, reactivex.operators._D]]], reactivex.observable.observable.Observable[reactivex.operators._T]]

	The starmap operator.

Unpack arguments grouped as tuple elements of an observable
sequence and return an observable sequence of values by invoking
the mapper function with star applied unpacked elements as
positional arguments.

Use instead of map() when the the arguments to the mapper is
grouped as tuples and the mapper function takes multiple arguments.

[image: starmap]

Example

>>> starmap(lambda x, y: x + y)

	Parameters

	mapper (Optional[Callable[…, Any]]) – A transform function to invoke with unpacked elements
as arguments.

	Return type

	Callable[[Observable[Any]], Observable[Any]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing the results of
invoking the mapper function with unpacked elements of the
source.

	
giving.operators.starmap_indexed(mapper: Callable[[reactivex.operators._A, int], reactivex.operators._T]) → Callable[[reactivex.observable.observable.Observable[reactivex.operators._A]], reactivex.observable.observable.Observable[reactivex.operators._T]]

	
giving.operators.starmap_indexed(mapper: Callable[[reactivex.operators._A, reactivex.operators._B, int], reactivex.operators._T]) → Callable[[reactivex.observable.observable.Observable[Tuple[reactivex.operators._A, reactivex.operators._B]]], reactivex.observable.observable.Observable[reactivex.operators._T]]

	
giving.operators.starmap_indexed(mapper: Callable[[reactivex.operators._A, reactivex.operators._B, reactivex.operators._C, int], reactivex.operators._T]) → Callable[[reactivex.observable.observable.Observable[Tuple[reactivex.operators._A, reactivex.operators._B, reactivex.operators._C]]], reactivex.observable.observable.Observable[reactivex.operators._T]]

	
giving.operators.starmap_indexed(mapper: Callable[[reactivex.operators._A, reactivex.operators._B, reactivex.operators._C, reactivex.operators._D, int], reactivex.operators._T]) → Callable[[reactivex.observable.observable.Observable[Tuple[reactivex.operators._A, reactivex.operators._B, reactivex.operators._C, reactivex.operators._D]]], reactivex.observable.observable.Observable[reactivex.operators._T]]

	Variant of starmap() which accepts an indexed mapper.

[image: starmap_indexed]

Example

>>> starmap_indexed(lambda x, y, i: x + y + i)

	Parameters

	mapper (Optional[Callable[…, Any]]) – A transform function to invoke with unpacked elements
as arguments.

	Return type

	Callable[[Observable[Any]], Observable[Any]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing the results of
invoking the indexed mapper function with unpacked elements
of the source.

	
giving.operators.start_with(*args)

	Prepends a sequence of values to an observable sequence.

[image: start_with]

Example

>>> start_with(1, 2, 3)

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes a source observable and returns
the source sequence prepended with the specified values.

	
giving.operators.subscribe_on(scheduler)

	Subscribe on the specified scheduler.

Wrap the source sequence in order to run its subscription and
unsubscription logic on the specified scheduler. This operation is
not commonly used; see the remarks section for more information on
the distinction between subscribe_on and observe_on.

This only performs the side-effects of subscription and
unsubscription on the specified scheduler. In order to invoke
observer callbacks on a scheduler, use observe_on.

	Parameters

	scheduler (SchedulerBase) – Scheduler to perform subscription and unsubscription
actions on.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns the source sequence whose subscriptions and
un-subscriptions happen on the specified scheduler.

	
giving.operators.sum(*, scan=False)

	

	
giving.operators.switch_latest()

	The switch_latest operator.

Transforms an observable sequence of observable sequences into an
observable sequence producing values only from the most recent
observable sequence.

[image: switch_latest]

	Returns

	A partially applied operator function that takes an observable
source and returns the observable sequence that at any point in
time produces the elements of the most recent inner observable
sequence that has been received.

	
giving.operators.tag(group='', field='$word', group_field='$group')

	Tag each dict or object with a unique word.

If the item is a dict, do item[field] = <new_word>, otherwise
attempt to do setattr(item, field, <new_word>).

These tags are displayed specially by the
display() method and they
can be used to determine breakpoints with the
breakword() method.

	Parameters

	
	group – An arbitrary group name that corresponds to an independent
sequence of words. It determines the color in display.

	field – The field name in which to put the word
(default: $word).

	group_field – The field name in which to put the group
(default: $group).

	
giving.operators.take(count)

	Returns a specified number of contiguous elements from the start
of an observable sequence.

[image: take]

Example

>>> op = take(5)

	Parameters

	count (int) – The number of elements to return.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that contains the specified
number of elements from the start of the input sequence.

	
giving.operators.take_last(count)

	Returns a specified number of contiguous elements from the end
of an observable sequence.

[image: take_last]

Example

>>> res = take_last(5)

This operator accumulates a buffer with a length enough to store
elements count elements. Upon completion of the source sequence,
this buffer is drained on the result sequence. This causes the
elements to be delayed.

	Parameters

	
	count (int) – Number of elements to take from the end of the source

	sequence. –

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing the specified number
of elements from the end of the source sequence.

	
giving.operators.take_last_buffer(count)

	The take_last_buffer operator.

Returns an array with the specified number of contiguous elements
from the end of an observable sequence.

[image: take_last_buffer]

Example

>>> res = source.take_last(5)

This operator accumulates a buffer with a length enough to store
elements count elements. Upon completion of the source sequence,
this buffer is drained on the result sequence. This causes the
elements to be delayed.

	Parameters

	
	count (int) – Number of elements to take from the end of the source

	sequence. –

	Return type

	Callable[[Observable[~_T]], Observable[List[~_T]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing a single list with
the specified number of elements from the end of the source
sequence.

	
giving.operators.take_last_with_time(duration, scheduler=None)

	Returns elements within the specified duration from the end of
the observable source sequence.

[image: take_last_with_time]

Example

>>> res = take_last_with_time(5.0)

This operator accumulates a queue with a length enough to store
elements received during the initial duration window. As more
elements are received, elements older than the specified duration
are taken from the queue and produced on the result sequence. This
causes elements to be delayed with duration.

	Parameters

	
	duration (Union[timedelta, float]) – Duration for taking elements from the end of the

	sequence. –

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence with the elements taken
during the specified duration from the end of the source
sequence.

	
giving.operators.take_until(other)

	Returns the values from the source observable sequence until the
other observable sequence produces a value.

[image: take_until]

	Parameters

	other (Observable[Any]) – Observable sequence that terminates propagation of
elements of the source sequence.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns as observable sequence containing the elements of the
source sequence up to the point the other sequence interrupted
further propagation.

	
giving.operators.take_until_with_time(end_time, scheduler=None)

	Takes elements for the specified duration until the specified
end time, using the specified scheduler to run timers.

[image: take_until_with_time]

Examples

>>> res = take_until_with_time(dt, [optional scheduler])
>>> res = take_until_with_time(5.0, [optional scheduler])

	Parameters

	
	end_time (Union[datetime, timedelta, float]) – Time to stop taking elements from the source
sequence. If this value is less than or equal to
datetime.utcnow(), the result stream will complete
immediately.

	scheduler (Optional[SchedulerBase]) – Scheduler to run the timer on.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence with the elements taken until
the specified end time.

	
giving.operators.take_while(predicate, inclusive=False)

	Returns elements from an observable sequence as long as a
specified condition is true.

[image: take_while]

Example

>>> take_while(lambda value: value < 10)

	Parameters

	
	predicate (Callable[[~_T], bool]) – A function to test each element for a condition.

	inclusive (bool) – [Optional] When set to True the value that caused
the predicate function to return False will also be emitted.
If not specified, defaults to False.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence that contains the elements from
the input sequence that occur before the element at which the
test no longer passes.

	
giving.operators.take_while_indexed(predicate, inclusive=False)

	Returns elements from an observable sequence as long as a
specified condition is true. The element’s index is used in the
logic of the predicate function.

[image: take_while_indexed]

Example

>>> take_while_indexed(lambda value, index: value < 10 or index < 10)

	Parameters

	
	predicate (Callable[[~_T, int], bool]) – A function to test each element for a condition; the
second parameter of the function represents the index of the
source element.

	inclusive (bool) – [Optional] When set to True the value that caused
the predicate function to return False will also be emitted.
If not specified, defaults to False.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An observable sequence that contains the elements from the
input sequence that occur before the element at which the test no
longer passes.

	
giving.operators.take_with_time(duration, scheduler=None)

	Takes elements for the specified duration from the start of the
observable source sequence.

[image: take_with_time]

Example

>>> res = take_with_time(5.0)

This operator accumulates a queue with a length enough to store
elements received during the initial duration window. As more
elements are received, elements older than the specified duration
are taken from the queue and produced on the result sequence. This
causes elements to be delayed with duration.

	Parameters

	duration (Union[timedelta, float]) – Duration for taking elements from the start of the
sequence.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence with the elements taken during
the specified duration from the start of the source sequence.

	
giving.operators.throttle(window_duration, scheduler=None)

	throttle() is an alias of throttle_first()

	
giving.operators.throttle_first(window_duration, scheduler=None)

	Returns an Observable that emits only the first item emitted by
the source Observable during sequential time windows of a specified
duration.

	Parameters

	window_duration (Union[timedelta, float]) – time to wait before emitting another item
after emitting the last item.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable that performs the throttle operation.

	
giving.operators.throttle_with_mapper(throttle_duration_mapper)

	The throttle_with_mapper operator.

Ignores values from an observable sequence which are followed by
another value within a computed throttle duration.

Example

>>> op = throttle_with_mapper(lambda x: rx.Scheduler.timer(x+x))

	Parameters

	
	throttle_duration_mapper (Callable[[Any], Observable[Any]]) – Mapper function to retrieve an

	each (observable sequence indicating the throttle duration for) –

	element. (given) –

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	A partially applied operator function that takes an observable
source and returns the throttled observable sequence.

	
giving.operators.throttle_with_timeout(duetime, scheduler=None)

	Ignores values from an observable sequence which are followed by
another value before duetime.

[image: debounce]

Example

>>> res = debounce(5.0) # 5 seconds

	Parameters

	
	duetime (Union[timedelta, float]) – Duration of the throttle period for each value
(specified as a float denoting seconds or an instance of timedelta).

	scheduler (Optional[SchedulerBase]) – Scheduler to debounce values on.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes the source observable and
returns the debounced observable sequence.

	
giving.operators.time_interval(scheduler=None)

	Records the time interval between consecutive values in an
observable sequence.

[image: time_interval]

Examples

>>> res = time_interval()

	Return type

	Callable[[Observable[~_T]], Observable[ForwardRef]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence with time interval information
on values.

	
giving.operators.timeout(duetime, other=None, scheduler=None)

	Returns the source observable sequence or the other observable
sequence if duetime elapses.

[image: timeout]

Examples

>>> res = timeout(5.0)
>>> res = timeout(datetime(), return_value(42))
>>> res = timeout(5.0, return_value(42))

	Parameters

	
	duetime (Union[datetime, timedelta, float]) – Absolute (specified as a datetime object) or relative time
(specified as a float denoting seconds or an instance of timedetla)
when a timeout occurs.

	other (Optional[Observable[~_T]]) – Sequence to return in case of a timeout. If not
specified, a timeout error throwing sequence will be used.

	scheduler (Optional[SchedulerBase]) –

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes and observable source and
returns the source sequence switching to the other sequence in
case of a timeout.

	
giving.operators.timeout_with_mapper(first_timeout=None, timeout_duration_mapper=None, other=None)

	Returns the source observable sequence, switching to the other
observable sequence if a timeout is signaled.

Examples

>>> res = timeout_with_mapper(reactivex.timer(0.5))
>>> res = timeout_with_mapper(
 reactivex.timer(0.5), lambda x: reactivex.timer(0.2)
)
>>> res = timeout_with_mapper(
 reactivex.timer(0.5),
 lambda x: reactivex.timer(0.2),
 reactivex.return_value(42)
)

	Parameters

	
	first_timeout (Optional[Observable[Any]]) – [Optional] Observable sequence that represents
the timeout for the first element. If not provided, this
defaults to reactivex.never().

	timeout_duration_mapper (Optional[Callable[[~_T], Observable[Any]]]) – [Optional] Selector to retrieve an
observable sequence that represents the timeout between the
current element and the next element.

	other (Optional[Observable[~_T]]) – [Optional] Sequence to return in case of a timeout. If
not provided, this is set to reactivex.throw().

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns the source sequence switching to the other sequence in
case of a timeout.

	
giving.operators.timestamp(scheduler=None)

	The timestamp operator.

Records the timestamp for each value in an observable sequence.

Examples

>>> timestamp()

Produces objects with attributes value and timestamp, where
value is the original value.

	Return type

	Callable[[Observable[~_T]], Observable[ForwardRef]]

	Returns

	A partially applied operator function that takes an observable
source and returns an observable sequence with timestamp
information on values.

	
giving.operators.to_dict(key_mapper, element_mapper=None)

	Converts the observable sequence to a Map if it exists.

	Parameters

	
	key_mapper (Callable[[~_T], ~_TKey]) – A function which produces the key for the
dictionary.

	element_mapper (Optional[Callable[[~_T], ~_TValue]]) – [Optional] An optional function which produces
the element for the dictionary. If not present, defaults to
the value from the observable sequence.

	Return type

	Callable[[Observable[~_T]], Observable[Dict[~_TKey, ~_TValue]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence with a single value of a
dictionary containing the values from the observable sequence.

	
giving.operators.to_future(future_ctor=None)

	Converts an existing observable sequence to a Future.

Example

op = to_future(asyncio.Future);

	Parameters

	future_ctor – [Optional] The constructor of the future.

	Returns

	An operator function that takes an observable source and returns
a future with the last value from the observable sequence.

	
giving.operators.to_iterable()

	Creates an iterable from an observable sequence.

There is also an alias called to_list.

	Return type

	Callable[[Observable[~_T]], Observable[List[~_T]]]

	Returns

	An operator function that takes an obserable source and
returns an observable sequence containing a single element with
an iterable containing all the elements of the source sequence.

	
giving.operators.to_list()

	Creates an iterable from an observable sequence.

There is also an alias called to_list.

	Return type

	Callable[[Observable[~_T]], Observable[List[~_T]]]

	Returns

	An operator function that takes an obserable source and
returns an observable sequence containing a single element with
an iterable containing all the elements of the source sequence.

	
giving.operators.to_marbles(timespan=0.1, scheduler=None)

	Convert an observable sequence into a marble diagram string.

	Parameters

	
	timespan (Union[timedelta, float]) – [Optional] duration of each character in second.
If not specified, defaults to 0.1s.

	scheduler (Optional[SchedulerBase]) – [Optional] The scheduler used to run the the input
sequence on.

	Return type

	Callable[[Observable[Any]], Observable[str]]

	Returns

	Observable stream.

	
giving.operators.to_set()

	Converts the observable sequence to a set.

	Return type

	Callable[[Observable[~_T]], Observable[Set[~_T]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence with a single value of a set
containing the values from the observable sequence.

	
giving.operators.top(n=10, key=None)

	Return the top n values, sorted in descending order.

[image: top]

top may emit less than n elements, if there are
less than n elements in the orginal sequence.

	Parameters

	
	n – The number of top entries to return.

	key – The comparison key function to use or a string.

	
giving.operators.variance(*, scan=False)

	

	
giving.operators.where(*keys, **conditions)

	Filter entries with the given keys meeting the given conditions.

[image: where]

[image: where2]

Example

where("x", "!y", z=True, w=lambda x: x > 0)

	Parameters

	
	keys – Keys that must be present in the dictionary or, if a key starts
with “!”, it must not be present.

	conditions – Maps a key to the value it must be associated to in the
dictionary, or to a predicate function on the value.

	
giving.operators.where_any(*keys)

	Filter entries with any of the given keys.

[image: where_any]

	Parameters

	keys – Keys that must be present in the dictionary.

	
giving.operators.while_do(condition)

	Repeats source as long as condition holds emulating a while
loop.

	Parameters

	condition (Callable[[Observable[~_T]], bool]) – The condition which determines if the source will be
repeated.

	Return type

	Callable[[Observable[~_T]], Observable[~_T]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence which is repeated as long as the
condition holds.

	
giving.operators.window(boundaries)

	Projects each element of an observable sequence into zero or
more windows.

[image: window]

Examples

>>> res = window(reactivex.interval(1.0))

	Parameters

	boundaries (Observable[Any]) – Observable sequence whose elements denote the
creation and completion of non-overlapping windows.

	Return type

	Callable[[Observable[~_T]], Observable[Observable[~_T]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence of windows.

	
giving.operators.window_toggle(openings, closing_mapper)

	Projects each element of an observable sequence into zero or
more windows.

[image: window]

>>> res = window(reactivex.interval(0.5), lambda i: reactivex.timer(i))

	Parameters

	
	openings (Observable[Any]) – Observable sequence whose elements denote the
creation of windows.

	closing_mapper (Callable[[Any], Observable[Any]]) – A function invoked to define the closing of each
produced window. Value from openings Observable that initiated
the associated window is provided as argument to the function.

	Return type

	Callable[[Observable[~_T]], Observable[Observable[~_T]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence of windows.

	
giving.operators.window_when(closing_mapper)

	Projects each element of an observable sequence into zero or
more windows.

[image: window]

Examples

>>> res = window(lambda: reactivex.timer(0.5))

	Parameters

	closing_mapper (Callable[[], Observable[Any]]) – A function invoked to define
the closing of each produced window. It defines the
boundaries of the produced windows (a window is started
when the previous one is closed, resulting in
non-overlapping windows).

	Return type

	Callable[[Observable[~_T]], Observable[Observable[~_T]]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence of windows.

	
giving.operators.window_with_count(count, skip=None)

	Projects each element of an observable sequence into zero or more
windows which are produced based on element count information.

[image: window_with_count]

Examples

>>> window_with_count(10)
>>> window_with_count(10, 1)

	Parameters

	
	count (int) – Length of each window.

	skip (Optional[int]) – [Optional] Number of elements to skip between creation of
consecutive windows. If not specified, defaults to the
count.

	Return type

	Callable[[Observable[~_T]], Observable[Observable[~_T]]]

	Returns

	An observable sequence of windows.

	
giving.operators.window_with_time(timespan, timeshift=None, scheduler=None)

	
	Return type

	Callable[[Observable[~_T]], Observable[Observable[~_T]]]

	
giving.operators.window_with_time_or_count(timespan, count, scheduler=None)

	
	Return type

	Callable[[Observable[~_T]], Observable[Observable[~_T]]]

	
giving.operators.with_latest_from(*sources)

	The with_latest_from operator.

Merges the specified observable sequences into one observable
sequence by creating a tuple only when the first
observable sequence produces an element. The observables can be
passed either as separate arguments or as a list.

[image: with_latest_from]

Examples

>>> op = with_latest_from(obs1)
>>> op = with_latest_from([obs1, obs2, obs3])

	Return type

	Callable[[Observable[Any]], Observable[Any]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing the result of
combining elements of the sources into a tuple.

	
giving.operators.wmap(name, fn=None, pass_keys=True)

	Map each begin/end pair of a give.wrap.

In this schema, B and E correspond to the messages sent in the enter and exit
phases respectively of the wrap() context manager.

[image: group_wrap]

Example

def _wrap(x):
 yield
 return x * 10

with given() as gv:
 results = gv.wmap("block", _wrap).accum()

 with give.wrap("block", x=3):
 with give.wrap("block", x=4):
 pass

assert results == [40, 30]

	Parameters

	
	name – Name of the wrap block to group on.

	fn – A generator function that yields exactly once.

	pass_keys – Whether to pass the arguments to give.wrap() as
keyword arguments at the start (defaults to True).

	
giving.operators.zip(*args)

	Merges the specified observable sequences into one observable
sequence by creating a tuple whenever all of the
observable sequences have produced an element at a corresponding
index.

[image: zip]

Example

>>> res = zip(obs1, obs2)

	Parameters

	args (Observable[Any]) – Observable sources to zip.

	Return type

	Callable[[Observable[Any]], Observable[Any]]

	Returns

	An operator function that takes an observable source and
returns an observable sequence containing the result of
combining elements of the sources as a tuple.

	
giving.operators.zip_with_iterable(second)

	Merges the specified observable sequence and list into one
observable sequence by creating a tuple whenever all of
the observable sequences have produced an element at a
corresponding index.

[image: zip_with_iterable]

	Example
	>>> res = zip([1,2,3])

	Parameters

	second (Iterable[~_T2]) – Iterable to zip with the source observable..

	Return type

	Callable[[Observable[~_T1]], Observable[Tuple[~_T1, ~_T2]]]

	Returns

	An operator function that takes and observable source and
returns an observable sequence containing the result of
combining elements of the sources as a tuple.

	
giving.operators.zip_with_list(second)

	Merges the specified observable sequence and list into one
observable sequence by creating a tuple whenever all of
the observable sequences have produced an element at a
corresponding index.

[image: zip_with_iterable]

	Example
	>>> res = zip([1,2,3])

	Parameters

	second (Iterable[~_T2]) – Iterable to zip with the source observable..

	Return type

	Callable[[Observable[~_T1]], Observable[Tuple[~_T1, ~_T2]]]

	Returns

	An operator function that takes and observable source and
returns an observable sequence containing the result of
combining elements of the sources as a tuple.

ptera.interpret

Create events on transformed functions based on selectors.

There are some extra features here compared to the standard Probe interface,
namely Total which can accumulate
multiple values for non-focus variables and is only triggered when the
selector’s outer function finishes.

	
class ptera.interpret.BaseAccumulator(*, selector, intercept=None, trigger=None, close=None, parent=None, template=True, check=True, pass_info=False)

	Accumulates the values of variables in Capture objects.

Under certain conditions, call user-provided event functions.

Any function given to the constructor must take one argument which is the
dictionary of captures.

	Parameters

	
	selector – The selector to use.

	trigger – The function to call when the focus variable is set.

	intercept – The function to call to override the value of the
focus variable.

	close – The function to call when the selector is closed.

	parent – The parent Accumulator.

	template – Whether the Accumulator is a “template” and should be
cloned prior to accumulating anything.

	check – Whether to filter that the values are correct in a selector
such as f(x=1) > y. Otherwise the =1 would be ignored.

	pass_info – Whether to pass the accumulator and current triggered
element to trigger or intercept.

	
build()

	Build the dictionary of captures.

The built dictionary includes captures from the parents.

	
fork(selector=None)

	Fork the Accumulator, possibly with a new selector.

Children Accumulators can accumulate new data while sharing what is
accumulated by their parents.

	
getcap(element)

	Get the Capture object for a leaf element.

	
class ptera.interpret.Capture(element)

	Represents captured values for a variable.

	Parameters

	element – The selector element for which we are capturing.

	
element

	The selector element for which we are capturing.

	
capture

	The variable name or alias corresponding to the
capture (same as element.capture).

	
names

	The list of names of the variables that match the
element.

	
values

	The list of values taken by matching variables.

	
accum(varname, value)

	Accumulate a variable name and value.

	
property name

	Name of the capture.

For a generic element such as $x, there may be multiple
names, in which case the .names attribute should be used
instead.

	
set(varname, value)

	Set a variable name and value, overwriting the previous capture.

	
snapshot()

	Return a snapshot of the capture at this moment.

	
property value

	Value of the capture.

This only works if there is a unique value. Otherwise, you must
use .values.

	
class ptera.interpret.Immediate(selector, trigger=None, **kwargs)

	Accumulator triggered when the focus variable is set.

The Immediate accumulator only keeps the last value of each variable in the
selector.

Any function given to the constructor must take one argument which is the
dictionary of captures.

	Parameters

	
	selector – The selector to use.

	trigger – The function to call when the focus variable is set.

	intercept – The function to call to override the value of the
focus variable.

	close – The function to call when the selector is closed.

	
class ptera.interpret.Interactor(fn, accumulators=None)

	Represents an interactor for a tooled function.

Define an interact method called by the tooled function
when variables are changed.

	
exit()

	Exit the interactor.

This triggers the close function on available accumulators.

	
interact(varname, key, category, value, overridable)

	Interaction function called when setting a variable in a tooled function.

	Parameters

	
	varname – The variable’s name.

	key – The attribute or index set on the variable (as a Key object)

	category – The variable’s category or tag (annotation)

	value – The value given to the variable in the original code.

	overridable – Whether the value can be overriden.

	Returns

	The value to actually set the variable to.

	
register(acc, captures, close_at_exit)

	Register an accumulator for a certain set of captures.

	Parameters

	
	acc – An Accumulator.

	captures – A dictionary of elements to sets of matching
variable names for which the accumulator will be
triggered.

	close_at_exit – Whether to call the accumulator’s close
function when the interactor exits.

	
work_on(varname, key, category)

	Return a WorkingFrame for the given variable.

	Parameters

	
	varname – The name of the variable.

	key – The key (attribute or index) that is being set on the
variable.

	category – The variable’s category or tag.

	
exception ptera.interpret.OverrideException

	Exception raised when trying to override a closure variable.

	
class ptera.interpret.Total(selector, close, trigger=None, **kwargs)

	Accumulator usually triggered when the selector’s outer function ends.

The Total accumulator keeps all values taken by the variables in the
selector for each value taken by the focus variable. For example, if the
selector is f(x) > g(!y) > h(z) and h is called multiple times for
multiple values of z, they will all be accumulated together. However, if
y is set multiple times, there will be multiple events.

Any function given to the constructor must take one argument which is the
dictionary of captures.

	Parameters

	
	selector – The selector to use.

	close – The function to call when the selector is closed.

	trigger – The function to call when the focus variable is set.

	intercept – The function to call to override the value of the
focus variable.

	
class ptera.interpret.WorkingFrame(varname, key, category, accumulators)

	Context manager to facilitate working on a variable.

	
intercept(tentative)

	Execute the intercepts of all matching accumulators.

The last intercept that does not return ABSENT wins.

	Parameters

	tentative – The tentative value for the variable, as
provided in the original code.

	Returns

	The value the intercepted variable should take.

	
log(value)

	Log a value for the variable.

	
trigger()

	Trigger an event using what was accumulated.

ptera.opparse

Parser for the selector syntax.

	
class ptera.opparse.ASTNode(parts)

	Node that results from parsing.

	
args

	List of arguments.

	
ops

	List of operators. Generally one less than the number of
arguments.

	
key

	String key that represents the kind of operation we are
dealing with: which arguments are non-null and what the ops
are. If args == [a, b, None] and ops == [+, -] then
key == “X + X - _”.

	
location

	Location of the node in the source code. It encompasses
the locations of all args and ops.

	
class ptera.opparse.Lexer(definitions)

	The Lexer splits source code into Tokens.

	
class ptera.opparse.OperatorPrecedenceTower(operators)

	Compare operators using a simple operator tower.

	
resolve(op)

	Resolve the priority tuple for a given op.

	
class ptera.opparse.Parser(lexer, order)

	Operator precedence parser.

	
finalize(parts)

	Clean up a list of parts that form a completed ASTNode.

	If the parts are [None, op, None], this is just the op.

	If the parts are [arg1, op1, arg2, op2, … argn] then we
create an ASTNode with the given args and ops.

	
process(tokens)

	Process a list of tokens.

	
class ptera.opparse.Token(value, type, source, start, end)

	Token produced by the lexer.

	
value

	Textual value of the token.

	
type

	Type of the token.

	
location

	Location of the token.

	
ptera.opparse.cbrack(prio)

	Create a priority tuple for a closing bracket.

	
ptera.opparse.lassoc(prio)

	Create a priority tuple for a left-associative operator.

	
ptera.opparse.obrack(prio)

	Create a priority tuple for an opening bracket.

	
ptera.opparse.rassoc(prio)

	Create a priority tuple for a right-associative operator.

ptera.overlay

	
class ptera.overlay.BaseOverlay(*handlers)

	An Overlay contains a set of selectors and associated rules.

When used as a context manager, the rules are applied within the with
block.

	Parameters

	handlers – A collection of handlers, each typically an
instance of either Immediate or
Total.

	
add(*handlers)

	Add new handlers.

	
fork()

	Create a clone of this overlay.

	
class ptera.overlay.HandlerCollection(handler_pairs=None)

	List of (selector, accumulator) pairs.

The selector in the pair may not be the same as accumulator.selector.
When processing a selector such as f > g > x, after entering f,
we may map the g > x selector to the same accumulator in a new
collection that represents what should be done inside f.

	
plus(handler_pairs)

	Clone this collection with additional (selector, accumulator) pairs.

	
proceed(fn)

	Proceed into a call to fn with this collection.

Considers each selector to see if it matches fn. Returns an Interactor
object for the call and a new HandlerCollection with the selectors
to use inside the call.

	
class ptera.overlay.Overlay(*handlers)

	An Overlay contains a set of selectors and associated rules.

When used as a context manager, the rules are applied within the with
block.

Rules can be given in the constructor or built using helper methods
such as on, tapping or tweaking.

	Parameters

	handlers – A collection of handlers, each typically an
instance of either Immediate or
Total.

	
on(selector, **kwargs)

	Make a decorator for a function to trigger on a selector.

	Parameters

	
	selector – The selector to use.

	full – (default False) Whether to return a dictionary of Capture objects.

	all – (default False) If not full, whether to return a list of
results for each variable or a single value.

	immediate – (default True) Whether to use an
Immediate() accumulator.
If False, use a Total() accumulator.

	
register(selector, fn, full=False, all=False, immediate=True)

	Register a function to trigger on a selector.

	Parameters

	
	selector – The selector to use.

	fn – The function to register.

	full – (default False) Whether to return a dictionary of Capture objects.

	all – (default False) If not full, whether to return a list of
results for each variable or a single value.

	immediate – (default True) Whether to use an
Immediate accumulator.
If False, use a Total accumulator.

	
rewrite(rewriters, full=False)

	Override the focus variables of selectors.

	Parameters

	rewriters – A {selector: override_function} dictionary.

	
rewriting(values, full=False)

	Fork this Overlay and rewrite().

Can be called on the class (with Overlay.rewriting(...):).

	
tap(selector, dest=None, **kwargs)

	Tap values from a selector into a list.

	Parameters

	
	selector – The selector to use.

	dest – The list in which to append. If None, a list is created.

	Returns

	The list in which to append.

	
tapping(selector, dest=None, **kwargs)

	Context manager yielding a list in which results will be accumulated.

Can be called on the class (with Overlay.tapping(...):).

	
tweak(values)

	Override the focus variables of selectors.

	Parameters

	values – A {selector: value} dictionary.

	
tweaking(values)

	Fork this Overlay and tweak().

Can be called on the class (with Overlay.tweaking(...):).

	
ptera.overlay.autotool(selector, undo=False)

	Automatically tool functions inplace.

	Parameters

	selector – The selector to use as a basis for the tooling. Any
function it refers to will be tooled.

	
ptera.overlay.fits_selector(pfn, selector)

	Check whether a PteraFunction matches a selector.

	Parameters

	
	pfn – The PteraFunction.

	selector – The selector. We are trying to match the
outer scope.

	
class ptera.overlay.proceed(fn)

	Context manager to wrap execution of a function.

This uses the current HandlerCollection to
proceed through the current selectors.

	Parameters

	fn – The function that will be executed.

	Yields

	An Interactor that will be used by Ptera.

	
ptera.overlay.tooled(fn)

	Tool a function so that it can report changes in its variables to Ptera.

@tooled can be used as a decorator.

Note

You may write @tooled.inplace as a decorator to tool a
function inplace.

	Parameters

	fn – The function to tool.

ptera.probe

This module defines the probing functionality. The interface for probes is built on giving [https://giving.readthedocs.io/en/latest/]

	
ptera.probe.probing(*selectors, raw=False, probe_type=None, env=None, overridable=False)

	Probe that can be used as a context manager.

Example:

>>> def f(x):
... a = x * x
... return a

>>> with probing("f > a").print():
... f(4) # Prints {"a": 16}

	Parameters

	
	selectors – The selector strings describing the variables to probe (at least one).

	raw – Defaults to False. If True, produce a stream of Capture objects that
contain extra information about the capture.

	probe_type – Either “immediate”, “total”, or None (the default).

	If “immediate”, use Immediate.

	If “total”, use Total.

	If None, determine what to use based on whether the selector has
a focus or not.

	env – A dictionary that will be used to resolve symbols in the selector.
If it is not provided, ptera will seek the locals and globals
dictionaries of the scope where this function is called.

	overridable – Whether to include the override/koverride methods.

	
ptera.probe.global_probe(*selectors, raw=False, probe_type=None, env=None)

	Set a probe globally.

Example:

>>> def f(x):
... a = x * x
... return a

>>> probe = global_probe("f > a")
>>> probe["a"].print()
>>> f(4) # Prints 16

	Parameters

	
	selectors – The selector strings describing the variables to probe (at least one).

	raw – Defaults to False. If True, produce a stream of Capture objects that
contain extra information about the capture.

	probe_type – Either “immediate”, “total”, or None (the default).

	If “immediate”, use Immediate.

	If “total”, use Total.

	If None, determine what to use based on whether the selector has
a focus or not.

	env – A dictionary that will be used to resolve symbols in the selector.
If it is not provided, ptera will seek the locals and globals
dictionaries of the scope where this function is called.

	
class ptera.probe.Probe(*selectors, raw=False)

	Observable which generates a stream of values from program variables.

Probes should be created with
probing() or global_probe().

Note

In the documentation for some methods you may see calls to give()
or given(), but that’s because they come from the documentation
for the giving package (on top of which Probe is built).

give() is equivalent to what Ptera does when a
variable of interest is set, given() yields an object that has
the same interface as Probe (the superclass to Probe, in
fact). Take variables named gv to be probes.

	Parameters

	
	selectors – The selector strings describing the variables to probe (at least one).

	raw – Defaults to False. If True, produce a stream of Capture objects that
contain extra information about the capture. Mostly relevant for
advanced selectors such as f > $x:@Parameter which captures the value
of any variable with the Parameter tag under the generic name “x”.
When raw is True, the actual name of the variable is preserved in a
Capture object associated to x.

	probe_type – Either “immediate”, “total”, or None (the default).

	If “immediate”, use Immediate.

	If “total”, use Total.

	If None, determine what to use based on whether the selector has
a focus or not.

	env – A dictionary that will be used to resolve symbols in the selector.
If it is not provided, ptera will seek the locals and globals
dictionaries of the scope where this function is called.

	
accum(obj=None)

	Accumulate into a list or set.

	Parameters

	obj – The object in which to accumulate, either a list or
a set. If not provided, a new list is created.

	Returns

	The object in which the values will be accumulated.

	
allow_empty()

	Suppresses SequenceContainsNoElementsError.

This can be chained to reduce(), min(), first(), etc.
of an empty sequence to allow the output of these operations to be
empty. Otherwise, these operations would raise
rx.internal.exceptions.SequenceContainsNoElementsError.

	
breakpoint(*args, skip=[], **kwargs)

	Trigger a breakpoint on every entry.

	Parameters

	skip – A list of globs corresponding to modules to skip during debugging,
for example skip=["giving.*"] would skip all frames that are in
the giving module.

	
breakword(*args, skip=[], **kwargs)

	Trigger a breakpoint using breakword.

This feature requires the breakword package to be installed, and the
tag() operator to be applied.

gvt = gv.tag()
gvt.display()
gvt.breakword()

The above will display words next to each entry. Set the BREAKWORD environment
to one of these words to set a breakpoint when it is printed.

	Parameters

	
	skip – A list of globs corresponding to modules to skip during debugging,
for example skip=["giving.*"] would skip all frames that are in
the giving module.

	word – Only trigger the breakpoint on the given word.

	
display(*, breakword=None, skip=[], **kwargs)

	Pretty-print each element.

	Parameters

	
	colors – Whether to colorize the output or not.

	time_format – How to format the time (if present), e.g. "%Y-%m-%d %H:%M:%S"

	breakword – If not None, run self.breakword(word=breakword).

	skip – If breakword is not None, pass skip to the debugger.

	
eval(fn, *args, **kwargs)

	Run a function in the context of this Given and get the values.

def main():
 give(x=1)
 give(x=2)

values = given()["x"].eval(main)
assert values == [1, 2]

	Parameters

	
	fn – The function to run.

	args – Positional arguments to pass to fn.

	kwargs – Keyword arguments to pass to fn.

	
exec(fn, *args, **kwargs)

	Run a function in the context of this Given.

def main():
 give(x=1)
 give(x=2)

gv = given()
gv["x"].print()
gv.exec(main) # prints 1, 2

	Parameters

	
	fn – The function to run.

	args – Positional arguments to pass to fn.

	kwargs – Keyword arguments to pass to fn.

	
fail(*args, skip=[], **kwargs)

	Raise an exception if the stream produces anything.

	Parameters

	
	message – The exception message (format).

	exc_type – The exception type to raise. Will be passed the next data
element, and the result is raised. Defaults to
Failure.

	skip – Modules to skip in the traceback.
Defaults to “giving.*” and “rx.*”.

	
fail_if_empty(message=None, exc_type=<class 'giving.gvn.Failure'>, skip=['giving.*', 'rx.*'])

	Raise an exception if the stream is empty.

	Parameters

	exc_type – The exception type to raise. Defaults to Failure.

	
fail_if_false(*args, skip=[], **kwargs)

	Raise an exception if any element of the stream is falsey.

False, 0, [], etc. are falsey.

	Parameters

	exc_type – The exception type to raise. Defaults to Failure.

	
give(*keys, **extra)

	Give each element.

This calls give() for each value in the stream.

Be careful using this method because it could easily lead to an infinite loop.

	Parameters

	
	keys – Key(s) under which to give the elements.

	extra – Extra key/value pairs to give along with the rest.

	
ksubscribe(fn)

	Subscribe a function called with keyword arguments.

Note

The function passed to ksubscribe is wrapped with
lax_function(), so it is not necessary
to add a **kwargs argument for keys that you do not need.

gv.ksubscribe(lambda x, y=None, z=None: print(x, y, z))
give(x=1, z=2, abc=3) # Prints 1, None, 2

	Parameters

	fn – The function to call.

	
pipe(*ops)

	Pipe one or more operators.

Returns: An ObservableProxy.

	
print(format=None, skip_missing=False)

	Print each element of the stream.

	Parameters

	
	format – A format string as would be used with str.format.

	skip_missing – Whether to ignore KeyErrors due to missing entries in the format.

	
subscribe(observer=None, on_next=None, on_error=None, on_completed=None)

	Subscribe a function to this Observable stream.

with given() as gv:
 gv.subscribe(print)

 results = []
 gv["x"].subscribe(results.append)

 give(x=1) # prints {"x": 1}
 give(x=2) # prints {"x": 2}

 assert results == [1, 2]

	Parameters

	
	observer – The object that is to receive notifications.

	on_error – Action to invoke upon exceptional termination of the
observable sequence.

	on_completed – Action to invoke upon graceful termination of the
observable sequence.

	on_next – Action to invoke for each element in the observable
sequence.

	Returns

	An object representing the subscription with a dispose()
method to remove it.

	
values()

	Context manager to accumulate the stream into a list.

with given()["?x"].values() as results:
 give(x=1)
 give(x=2)

assert results == [1, 2]

Note that this will activate the root given() including all subscriptions
that it has (directly or indirectly).

	
wrap(name, fn=None, pass_keys=False, return_function=False)

	Subscribe a context manager, corresponding to wrap().

@gv.wrap("main")
def _():
 print("<")
 yield
 print(">")

with give.wrap("main"): # prints <
 ...
 with give.wrap("sub"):
 ...
 ...
... # prints >

	Parameters

	
	name – The name of the wrap block to subscribe to.

	fn – The wrapper function OR an object with an __enter__ method. If the wrapper is
a generator, it will be wrapped with contextmanager(fn).
If a function, it will be called with no arguments, or with the arguments given to
give.wrap if pass_keys=True.

	pass_keys – Whether to pass the arguments to give.wrap to this function as keyword
arguments. You may use kwrap() as a shortcut to pass_keys=True.

	
__or__(other)

	Alias for merge().

Merge this ObservableProxy with another.

	
__rshift__(subscription)

	Alias for subscribe().

If subscription is a list or a set, accumulate into it.

	
__getitem__(item)

	Mostly an alias for getitem().

Extra feature: if the item starts with "?", getitem is called with
strict=False.

Other methods: All operators in the operator list have a corresponding method on Probe.

	affix()

	all()

	amb()

	as_()

	as_observable()

	augment()

	average()

	average_and_variance()

	bottom()

	buffer()

	buffer_toggle()

	buffer_when()

	buffer_with_count()

	buffer_with_time()

	buffer_with_time_or_count()

	catch()

	collect_between()

	combine_latest()

	concat()

	contains()

	count()

	debounce()

	default_if_empty()

	delay()

	delay_subscription()

	delay_with_mapper()

	dematerialize()

	distinct()

	distinct_until_changed()

	do()

	do_action()

	do_while()

	element_at()

	element_at_or_default()

	exclusive()

	expand()

	filter()

	filter_indexed()

	finally_action()

	find()

	find_index()

	first()

	first_or_default()

	flat_map()

	flat_map_indexed()

	flat_map_latest()

	fork_join()

	format()

	getitem()

	group_by()

	group_by_until()

	group_join()

	group_wrap()

	ignore_elements()

	is_empty()

	join()

	keep()

	kfilter()

	kmap()

	kmerge()

	kscan()

	last()

	last_or_default()

	map()

	map_indexed()

	materialize()

	max()

	merge()

	merge_all()

	min()

	multicast()

	observe_on()

	on_error_resume_next()

	pairwise()

	partition()

	partition_indexed()

	pluck()

	pluck_attr()

	publish()

	publish_value()

	reduce()

	ref_count()

	repeat()

	replay()

	retry()

	roll()

	sample()

	scan()

	sequence_equal()

	share()

	single()

	single_or_default()

	single_or_default_async()

	skip()

	skip_last()

	skip_last_with_time()

	skip_until()

	skip_until_with_time()

	skip_while()

	skip_while_indexed()

	skip_with_time()

	slice()

	some()

	sole()

	starmap()

	starmap_indexed()

	start_with()

	subscribe_on()

	sum()

	switch_latest()

	tag()

	take()

	take_last()

	take_last_buffer()

	take_last_with_time()

	take_until()

	take_until_with_time()

	take_while()

	take_while_indexed()

	take_with_time()

	throttle()

	throttle_first()

	throttle_with_mapper()

	throttle_with_timeout()

	time_interval()

	timeout()

	timeout_with_mapper()

	timestamp()

	to_dict()

	to_future()

	to_iterable()

	to_list()

	to_marbles()

	to_set()

	top()

	variance()

	where()

	where_any()

	while_do()

	window()

	window_toggle()

	window_when()

	window_with_count()

	window_with_time()

	window_with_time_or_count()

	with_latest_from()

	zip()

	zip_with_iterable()

	zip_with_list()

	
class ptera.probe.OverridableProbe(*selectors, raw=False)

	Probe that allows overriding the values of variables.

OverridableProbe works essentially like Probe, but it also
has the override() and
koverride() methods, which can be used to
inject different values in the probed variables.

OverridableProbe is triggered before Probe, so a Probe will see the changes of
an OverridableProbe. However, if there are multiple operations on an OverridableProbe,
these operations will proceed using the old, non-overriden values.

	
koverride(setter)

	Override the value of the focus variable using a setter function with kwargs.

def f(x):
 ...
 y = 123
 ...

This will basically override y = 123 to become y = x + 123
OverridableProbe("f(x) > y").koverride(lambda x, y: x + y)

Note

Important: override() only overrides the focus variable. The focus
variable is the one to the right of >, or the one prefixed with !.

See override().

	Parameters

	setter – A function that takes a value from the pipeline as keyword arguments
and produces the value to set the focus variable to.

	
override(setter=<function _identity>)

	Override the value of the focus variable using a setter function.

Increment a whenever it is set (will not apply recursively)
OverridableProbe("f > a")["a"].override(lambda value: value + 1)

Note

Important: override() only overrides the focus variable. The focus
variable is the one to the right of >, or the one prefixed with !.

This is because a Ptera selector is triggered when the focus variable is set,
so realistically it is the only one that it makes sense to override.

Be careful, because it is easy to write misleading code:

THIS WILL SET y = x + 1, NOT x
OverridableProbe("f(x) > y")["x"].override(lambda x: x + 1)

Note

override will only work at the end of a synchronous pipe (map/filter are OK,
but not e.g. sample)

	Parameters

	setter – A function that takes a value from the pipeline and produces the value
to set the focus variable to.

	If not provided, the value from the stream is used as-is.

	If not callable, set the variable to the value of setter

ptera.selector

Specifications for call paths.

	
class ptera.selector.Call(**kwargs)

	Represents a call in the call stack.

	
encode()

	Return a string representation of the selector.

	
problems()

	Return a list of problems with this selector.

	Wildcards are not allowed for cuntions.

	All functions should be tooled.

	All captured variables should exist in their respective functions.

	For wildcard variables that specify a tag/category, at least one
variable should match.

	
specialize(specializations)

	Replace $variables in the selector using a specializations dict.

	
class ptera.selector.Element(**kwargs)

	Represents a variable or some other atom.

	
encode()

	Return a string representation of the selector.

	
specialize(specializations)

	Replace $variables in the selector using a specializations dict.

	
class ptera.selector.Evaluator

	Evaluator that transforms the parse tree into a Selector.

	
class ptera.selector.Selector(**kwargs)

	Represents a selector for variables in a call stack.

	
exception ptera.selector.SelectorError

	Error raised for invalid selectors.

	
ptera.selector.check_element(el, name, category)

	Check if Element el matches the given name and category.

	
ptera.selector.dict_resolver(env)

	Resolve a symbol from a dictionary, e.g. the globals directory.

	
ptera.selector.select(s, env=None, skip_modules=[], skip_frames=0, strict=False)

	Create a selector from a string.

	Parameters

	
	s – The string to compile to a Selector, or a Selector to return
unchanged.

	env – The environment to use to evaluate symbols in the selector.
If not given, the environment chosen is the parent scope.

	skip_modules – Modules to skip when looking for an environment.
We will go up through the stack until we get to a scope that
is outside these modules.

	skip_frames – Number of frames to skip when looking for an
environment.

	strict – Whether to require functions and variables in the selector
to be statically resolvable (will give better errors).

	
ptera.selector.verify(selector, display=None)

	Verify that the selector is resolvable.

This raises an exception if problems()
returns any problems.

	Wildcards are not allowed for cuntions.

	All functions should be tooled.

	All captured variables should exist in their respective functions.

	For wildcard variables that specify a tag/category, at least one
variable should match.

ptera.tags

Tag system for variables.

Variables can be tagged as e.g. x: ptera.tag.Important and the
selectors x:Important or *:Important would match it.
Alternatively, Ptera recognizes x: "@Important" as referring
to these tags.

	
class ptera.tags.Tag(name)

	Tag for a variable, to be used as an annotation.

	Parameters

	name – The name of the tag.

	
class ptera.tags.TagSet(members)

	Set of multiple tags.

	
ptera.tags.get_tags(*tags)

	Build a Tag or TagSet from strings.

	
ptera.tags.match_tag(to_match, tg)

	Return whether two Tags or TagSets match.

Only tg can be a TagSet.

ptera.transform

Code transform that instruments probed functions.

	
class ptera.transform.ExternalVariableCollector(tree, comments, closure_vars)

	Collect variables referred to but not defined in the given AST.

The attributes are filled after the object is created.

	
used

	Set of used variable names (does not include the names of
inner functions).

	
assigned

	Set of assigned variable names.

	
vardoc

	Dict that maps variable names to matching comments.

	
provenance

	Dict that maps variable names to “body” or “argument”
if they are defined as variables in the body or as function
arguments.

	
funcnames

	Set of function names defined in the body.

	
class ptera.transform.Key(type, value)

	Represents an attribute or index on a variable.

	
type

	Either “attr” or “index”.

	
value

	The value of the attribute or index.

	
affix_to(sym)

	Return a string representing getting the key from sym.

>>> Key("attr", "y").affix_to("x")
"x.y"
>>> Key("index", "y").affix_to("x")
"x['y']"

	
exception ptera.transform.PteraNameError(varname, function)

	The Ptera equivalent of a NameError, which gives more information.

	
info()

	Return information about the missing variable.

	
class ptera.transform.PteraTransformer(tree, evc, lib, filename, glb, to_instrument)

	Transform the AST of a function to instrument it with ptera.

The result field is set to the AST of the transformed function
after instantiation of the PteraTransformer.

	
make_interaction(target, ann, value, orig=None, expression=False)

	Create code for setting the value of a variable.

	
visit_AnnAssign(node)

	Rewrite an annotated assignment statement.

	Before:
	x: int

	After:
	x: int = _ptera_interact(‘x’, int)

	
visit_Assign(node)

	Rewrite an assignment statement.

	Before:
	x = y + z

	After:
	x = _ptera_interact(‘x’, None, y + z)

	
visit_Import(node)

	Rewrite an import statement.

	Before:
	import kangaroo

	After:
	import kangaroo
kangaroo = _ptera_interact(‘kangaroo’, None, kangaroo)

	
visit_ImportFrom(node)

	Rewrite an import statement.

	Before:
	from kangaroo import jump

	After:
	from kangaroo import jump
jump = _ptera_interact(‘jump’, None, jump)

	
visit_NamedExpr(node)

	Rewrite an assignment expression.

	Before:
	x := y + z

	After:
	x := _ptera_interact(‘x’, None, y + z)

	
class ptera.transform.SimpleVariableCollector(tree)

	

	
ptera.transform.name_error(varname, function, pop_frames=1)

	Raise a PteraNameError pointing to the right location.

	
ptera.transform.transform(fn, proceed, to_instrument=True, set_conformer=True)

	Return an instrumented version of fn.

The transform roughly works as follows.

def f(x: int):
 y = x * x
 return y + 1

Becomes:

def f(x: int):
 with proceed(f) as FR:
 FR.interact("#enter", None, None, True, False)
 x = FR.interact("x", None, int, x, True)
 y = FR.interact("y", None, None, x * x, True)
 VALUE = FR.interact("#value", None, None, y + 1, True)
 return VALUE

	Parameters

	
	fn – The function to instrument.

	proceed – A context manager that will wrap the function body
and which should yield some object that has an interact
method. Whenever a variable
is changed, the interact method receives the arguments
(symbol, key, category, value, overridable). See
proceed and
interact.

	to_instrument – List of Element
representing the variables to instrument, or True. If
True (or if one Element is a generic), all variables
are instrumented.

	set_conformer – Whether to set a “conformer” on the resulting
function which will update the code when the original code
is remapped through the codefind module (e.g. if you use
jurigged to change source while it is running, the
conformer will update the instrumentation to correspond
to the new version of the function). Mostly for internal
use.

	Returns

	A new function that is an instrumented version of the old one.
The function has the following properties set:

	__ptera_info__: An info dictionary about all variables used
in the function, their provenance, annotations and comments.

	__ptera_token__: The name of the global variable in which
the function is tucked so that it can refer to itself.

ptera.utils

Miscellaneous utilities.

	
exception ptera.utils.CodeNotFoundError

	

	
class ptera.utils.Named(name)

	A named object.

This class can be used to construct objects with a name that will be used
for the string representation.

	
class ptera.utils.autocreate(fn)

	Automatically create an instance when called on the class.

Basically makes it so that Klass.f() is equivalent to Klass().f().

	
class ptera.utils.cached_property(fn)

	Property that caches its value when we get it for the first time.

	
ptera.utils.is_tooled(fn)

	Return whether a function has been tooled for Ptera.

	
ptera.utils.keyword_decorator(deco)

	Wrap a decorator to optionally takes keyword arguments.

	
ptera.utils.refstring(fn)

	Return the canonical reference string to select fn.

For example, if fn is called bloop and is located in module
squid.game, the refstring will be /squid.game/bloop.

 Python Module Index

 g |
 p

 		 	

 		
 g	

 	[image: -]
 	
 giving	

 	
 	
 giving.operators	

 		 	

 		
 p	

 	[image: -]
 	
 ptera	

 	
 	
 ptera.interpret	

 	
 	
 ptera.opparse	

 	
 	
 ptera.overlay	

 	
 	
 ptera.probe	

 	
 	
 ptera.selector	

 	
 	
 ptera.tags	

 	
 	
 ptera.transform	

 	
 	
 ptera.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__getitem__() (ptera.probe.Probe method)

 	
 	__or__() (ptera.probe.Probe method)

 	__rshift__() (ptera.probe.Probe method)

A

 	
 	accum() (ptera.interpret.Capture method)

 	(ptera.probe.Probe method)

 	add() (ptera.overlay.BaseOverlay method)

 	affix() (in module giving.operators)

 	affix_to() (ptera.transform.Key method)

 	all() (in module giving.operators)

 	allow_empty() (ptera.probe.Probe method)

 	amb() (in module giving.operators)

 	args (ptera.opparse.ASTNode attribute)

 	
 	as_() (in module giving.operators)

 	as_observable() (in module giving.operators)

 	assigned (ptera.transform.ExternalVariableCollector attribute)

 	ASTNode (class in ptera.opparse)

 	augment() (in module giving.operators)

 	autocreate (class in ptera.utils)

 	autotool() (in module ptera.overlay)

 	average() (in module giving.operators)

 	average_and_variance() (in module giving.operators)

B

 	
 	BaseAccumulator (class in ptera.interpret)

 	BaseOverlay (class in ptera.overlay)

 	bottom() (in module giving.operators)

 	breakpoint() (ptera.probe.Probe method)

 	breakword() (ptera.probe.Probe method)

 	buffer() (in module giving.operators)

 	
 	buffer_toggle() (in module giving.operators)

 	buffer_when() (in module giving.operators)

 	buffer_with_count() (in module giving.operators)

 	buffer_with_time() (in module giving.operators)

 	buffer_with_time_or_count() (in module giving.operators)

 	build() (ptera.interpret.BaseAccumulator method)

C

 	
 	cached_property (class in ptera.utils)

 	Call (class in ptera.selector)

 	Capture (class in ptera.interpret)

 	capture (ptera.interpret.Capture attribute)

 	catch() (in module giving.operators)

 	cbrack() (in module ptera.opparse)

 	
 	check_element() (in module ptera.selector)

 	CodeNotFoundError

 	collect_between() (in module giving.operators)

 	combine_latest() (in module giving.operators)

 	concat() (in module giving.operators)

 	contains() (in module giving.operators)

 	count() (in module giving.operators)

D

 	
 	debounce() (in module giving.operators)

 	default_if_empty() (in module giving.operators)

 	delay() (in module giving.operators)

 	delay_subscription() (in module giving.operators)

 	delay_with_mapper() (in module giving.operators)

 	dematerialize() (in module giving.operators)

 	
 	dict_resolver() (in module ptera.selector)

 	display() (ptera.probe.Probe method)

 	distinct() (in module giving.operators)

 	distinct_until_changed() (in module giving.operators)

 	do() (in module giving.operators)

 	do_action() (in module giving.operators)

 	do_while() (in module giving.operators)

E

 	
 	Element (class in ptera.selector)

 	element (ptera.interpret.Capture attribute)

 	element_at() (in module giving.operators)

 	element_at_or_default() (in module giving.operators)

 	encode() (ptera.selector.Call method)

 	(ptera.selector.Element method)

 	
 	eval() (ptera.probe.Probe method)

 	Evaluator (class in ptera.selector)

 	exclusive() (in module giving.operators)

 	exec() (ptera.probe.Probe method)

 	exit() (ptera.interpret.Interactor method)

 	expand() (in module giving.operators)

 	ExternalVariableCollector (class in ptera.transform)

F

 	
 	fail() (ptera.probe.Probe method)

 	fail_if_empty() (ptera.probe.Probe method)

 	fail_if_false() (ptera.probe.Probe method)

 	filter() (in module giving.operators)

 	filter_indexed() (in module giving.operators)

 	finalize() (ptera.opparse.Parser method)

 	finally_action() (in module giving.operators)

 	find() (in module giving.operators)

 	find_index() (in module giving.operators)

 	first() (in module giving.operators)

 	
 	first_or_default() (in module giving.operators)

 	fits_selector() (in module ptera.overlay)

 	flat_map() (in module giving.operators)

 	flat_map_indexed() (in module giving.operators)

 	flat_map_latest() (in module giving.operators)

 	fork() (ptera.interpret.BaseAccumulator method)

 	(ptera.overlay.BaseOverlay method)

 	fork_join() (in module giving.operators)

 	format() (in module giving.operators)

 	funcnames (ptera.transform.ExternalVariableCollector attribute)

G

 	
 	get_tags() (in module ptera.tags)

 	getcap() (ptera.interpret.BaseAccumulator method)

 	getitem() (in module giving.operators)

 	give() (ptera.probe.Probe method)

 	
 giving.operators

 	module

 	
 	global_probe() (in module ptera.probe)

 	group_by() (in module giving.operators)

 	group_by_until() (in module giving.operators)

 	group_join() (in module giving.operators)

 	group_wrap() (in module giving.operators)

H

 	
 	HandlerCollection (class in ptera.overlay)

I

 	
 	ignore_elements() (in module giving.operators)

 	Immediate (class in ptera.interpret)

 	info() (ptera.transform.PteraNameError method)

 	interact() (ptera.interpret.Interactor method)

 	
 	Interactor (class in ptera.interpret)

 	intercept() (ptera.interpret.WorkingFrame method)

 	is_empty() (in module giving.operators)

 	is_tooled() (in module ptera.utils)

J

 	
 	join() (in module giving.operators)

K

 	
 	keep() (in module giving.operators)

 	Key (class in ptera.transform)

 	key (ptera.opparse.ASTNode attribute)

 	keyword_decorator() (in module ptera.utils)

 	kfilter() (in module giving.operators)

 	
 	kmap() (in module giving.operators)

 	kmerge() (in module giving.operators)

 	koverride() (ptera.probe.OverridableProbe method)

 	kscan() (in module giving.operators)

 	ksubscribe() (ptera.probe.Probe method)

L

 	
 	lassoc() (in module ptera.opparse)

 	last() (in module giving.operators)

 	last_or_default() (in module giving.operators)

 	
 	Lexer (class in ptera.opparse)

 	location (ptera.opparse.ASTNode attribute)

 	(ptera.opparse.Token attribute)

 	log() (ptera.interpret.WorkingFrame method)

M

 	
 	make_interaction() (ptera.transform.PteraTransformer method)

 	map() (in module giving.operators)

 	map_indexed() (in module giving.operators)

 	match_tag() (in module ptera.tags)

 	materialize() (in module giving.operators)

 	max() (in module giving.operators)

 	merge() (in module giving.operators)

 	merge_all() (in module giving.operators)

 	min() (in module giving.operators)

 	
 module

 	giving.operators

 	ptera.interpret

 	ptera.opparse

 	ptera.overlay

 	ptera.probe

 	ptera.selector

 	ptera.tags

 	ptera.transform

 	ptera.utils

 	
 	multicast() (in module giving.operators)

N

 	
 	name (ptera.interpret.Capture property)

 	name_error() (in module ptera.transform)

 	
 	Named (class in ptera.utils)

 	names (ptera.interpret.Capture attribute)

O

 	
 	obrack() (in module ptera.opparse)

 	observe_on() (in module giving.operators)

 	on() (ptera.overlay.Overlay method)

 	on_error_resume_next() (in module giving.operators)

 	OperatorPrecedenceTower (class in ptera.opparse)

 	
 	ops (ptera.opparse.ASTNode attribute)

 	Overlay (class in ptera.overlay)

 	OverridableProbe (class in ptera.probe)

 	override() (ptera.probe.OverridableProbe method)

 	OverrideException

P

 	
 	pairwise() (in module giving.operators)

 	Parser (class in ptera.opparse)

 	partition() (in module giving.operators)

 	partition_indexed() (in module giving.operators)

 	pipe() (ptera.probe.Probe method)

 	pluck() (in module giving.operators)

 	pluck_attr() (in module giving.operators)

 	plus() (ptera.overlay.HandlerCollection method)

 	print() (ptera.probe.Probe method)

 	Probe (class in ptera.probe)

 	probing() (in module ptera.probe)

 	problems() (ptera.selector.Call method)

 	proceed (class in ptera.overlay)

 	proceed() (ptera.overlay.HandlerCollection method)

 	process() (ptera.opparse.Parser method)

 	provenance (ptera.transform.ExternalVariableCollector attribute)

 	
 ptera.interpret

 	module

 	
 	
 ptera.opparse

 	module

 	
 ptera.overlay

 	module

 	
 ptera.probe

 	module

 	
 ptera.selector

 	module

 	
 ptera.tags

 	module

 	
 ptera.transform

 	module

 	
 ptera.utils

 	module

 	PteraNameError

 	PteraTransformer (class in ptera.transform)

 	publish() (in module giving.operators)

 	publish_value() (in module giving.operators)

R

 	
 	rassoc() (in module ptera.opparse)

 	reduce() (in module giving.operators)

 	ref_count() (in module giving.operators)

 	refstring() (in module ptera.utils)

 	register() (ptera.interpret.Interactor method)

 	(ptera.overlay.Overlay method)

 	
 	repeat() (in module giving.operators)

 	replay() (in module giving.operators)

 	resolve() (ptera.opparse.OperatorPrecedenceTower method)

 	retry() (in module giving.operators)

 	rewrite() (ptera.overlay.Overlay method)

 	rewriting() (ptera.overlay.Overlay method)

 	roll() (in module giving.operators)

S

 	
 	sample() (in module giving.operators)

 	scan() (in module giving.operators)

 	select() (in module ptera.selector)

 	Selector (class in ptera.selector)

 	SelectorError

 	sequence_equal() (in module giving.operators)

 	set() (ptera.interpret.Capture method)

 	share() (in module giving.operators)

 	SimpleVariableCollector (class in ptera.transform)

 	single() (in module giving.operators)

 	single_or_default() (in module giving.operators)

 	single_or_default_async() (in module giving.operators)

 	skip() (in module giving.operators)

 	skip_last() (in module giving.operators)

 	skip_last_with_time() (in module giving.operators)

 	skip_until() (in module giving.operators)

 	
 	skip_until_with_time() (in module giving.operators)

 	skip_while() (in module giving.operators)

 	skip_while_indexed() (in module giving.operators)

 	skip_with_time() (in module giving.operators)

 	slice() (in module giving.operators)

 	snapshot() (ptera.interpret.Capture method)

 	sole() (in module giving.operators)

 	some() (in module giving.operators)

 	specialize() (ptera.selector.Call method)

 	(ptera.selector.Element method)

 	starmap() (in module giving.operators)

 	starmap_indexed() (in module giving.operators)

 	start_with() (in module giving.operators)

 	subscribe() (ptera.probe.Probe method)

 	subscribe_on() (in module giving.operators)

 	sum() (in module giving.operators)

 	switch_latest() (in module giving.operators)

T

 	
 	Tag (class in ptera.tags)

 	tag() (in module giving.operators)

 	TagSet (class in ptera.tags)

 	take() (in module giving.operators)

 	take_last() (in module giving.operators)

 	take_last_buffer() (in module giving.operators)

 	take_last_with_time() (in module giving.operators)

 	take_until() (in module giving.operators)

 	take_until_with_time() (in module giving.operators)

 	take_while() (in module giving.operators)

 	take_while_indexed() (in module giving.operators)

 	take_with_time() (in module giving.operators)

 	tap() (ptera.overlay.Overlay method)

 	tapping() (ptera.overlay.Overlay method)

 	throttle() (in module giving.operators)

 	throttle_first() (in module giving.operators)

 	throttle_with_mapper() (in module giving.operators)

 	throttle_with_timeout() (in module giving.operators)

 	time_interval() (in module giving.operators)

 	
 	timeout() (in module giving.operators)

 	timeout_with_mapper() (in module giving.operators)

 	timestamp() (in module giving.operators)

 	to_dict() (in module giving.operators)

 	to_future() (in module giving.operators)

 	to_iterable() (in module giving.operators)

 	to_list() (in module giving.operators)

 	to_marbles() (in module giving.operators)

 	to_set() (in module giving.operators)

 	Token (class in ptera.opparse)

 	tooled() (in module ptera.overlay)

 	top() (in module giving.operators)

 	Total (class in ptera.interpret)

 	transform() (in module ptera.transform)

 	trigger() (ptera.interpret.WorkingFrame method)

 	tweak() (ptera.overlay.Overlay method)

 	tweaking() (ptera.overlay.Overlay method)

 	type (ptera.opparse.Token attribute)

 	(ptera.transform.Key attribute)

U

 	
 	used (ptera.transform.ExternalVariableCollector attribute)

V

 	
 	value (ptera.interpret.Capture property)

 	(ptera.opparse.Token attribute)

 	(ptera.transform.Key attribute)

 	values (ptera.interpret.Capture attribute)

 	values() (ptera.probe.Probe method)

 	vardoc (ptera.transform.ExternalVariableCollector attribute)

 	
 	variance() (in module giving.operators)

 	verify() (in module ptera.selector)

 	visit_AnnAssign() (ptera.transform.PteraTransformer method)

 	visit_Assign() (ptera.transform.PteraTransformer method)

 	visit_Import() (ptera.transform.PteraTransformer method)

 	visit_ImportFrom() (ptera.transform.PteraTransformer method)

 	visit_NamedExpr() (ptera.transform.PteraTransformer method)

W

 	
 	where() (in module giving.operators)

 	where_any() (in module giving.operators)

 	while_do() (in module giving.operators)

 	window() (in module giving.operators)

 	window_toggle() (in module giving.operators)

 	window_when() (in module giving.operators)

 	window_with_count() (in module giving.operators)

 	
 	window_with_time() (in module giving.operators)

 	window_with_time_or_count() (in module giving.operators)

 	with_latest_from() (in module giving.operators)

 	wmap() (in module giving.operators)

 	work_on() (ptera.interpret.Interactor method)

 	WorkingFrame (class in ptera.interpret)

 	wrap() (ptera.probe.Probe method)

Z

 	
 	zip() (in module giving.operators)

 	
 	zip_with_iterable() (in module giving.operators)

 	zip_with_list() (in module giving.operators)

 _images/marble-bf92f178aab29b95109adeb0c9c7bbdfc7965209.png
—o—o—o—w—

Yy Yy Yy Yy
skip_while(i: i<3)

(3 D i

_images/marble-c023c934bb4b63709fe6a9255bac3022b7ea174c.png
—o—o—o—o—

v v v v
take_with_time()

_images/marble-bc4ff8e48a531690a2cf5b2a166dfd22fd92290c.png
2 3 4
L2 L2 L2
scan(acc,i: acc+i)

v v v
3 G 10;

_images/marble-bf397132fa74dd0d17e17f08ce1314bbef0bbbd1.png
(1) 2} (3) re
\ \9 \9 ©
(o)) '0) '
O O \y 1
Y v v v v v v
merge._all()
v v y v 4 4 b 4
D—0)—)—C)—C)—@)—

_images/marble-c8e0d068c8d51a7ab5499296538b2c74025dfe40.png
L2

buffer()

_images/marble-c98393978f802bb0fe67988772a45adeda4060ab.png
y y y y y y
group_by_until()

4
O 1

_images/marble-03b8068203dfa863141e2d946ee5dfa724782216.png
L2

L2

some(i: i>3)

v
£

frut

18

_images/marble-0718300e5a5496454a339cdc4721f9f4e0411a17.png
y_ v

®

exclusive()

®

_images/marble-b9329fb493471af771a2b890318e9a08d9bc0cfd.png
O—0O®——O0
O—0—C——=0
y Yy vy vy y
switch_latest()

_images/marble-bb4eb7511f251165be29bce867fc77f1f2e56724.png
_

default_if_empty(42)

v

—_—

_images/marble-b55e762ff5a35f34ec54f1b2ec6c70eaf7775a3f.png
—O—O—O—0—

L2 L2 L2 L2

contains(3)

_images/marble-b90a41fff0fe1926f263bd7543265b69545cd304.png
L2 L2 L2 L2

_images/marble-0796d302706411e6023b5671684563964c0afa1c.png

nav.xhtml

 Table of Contents

 		
 Welcome to ptera’s documentation!

 		
 What is Ptera?

 		
 Getting started

 		
 Install

 		
 Usage

 		
 Guide

 		
 Probing

 		
 Probe a variable

 		
 Probe the return value

 		
 Probe multiple variables

 		
 Probe across scopes

 		
 Probe sibling calls

 		
 Total probes

 		
 Global probes

 		
 Wrapper probe

 		
 Operations

 		
 Printing

 		
 Subscribe

 		
 Map, filter, reduce

 		
 Overriding values

 		
 Asserts

 		
 Conditional breakpoints

 		
 Selected operators

 		
 Filtering

 		
 Mapping

 		
 Reduction

 		
 Arithmetic reductions

 		
 Wrapping

 		
 Timing

 		
 Debugging

 		
 Miscellaneous

 		
 Meta-variables

 		
 Generic variables

 		
 Selecting based on tags

 		
 Probe methods

 		
 Absolute references

 		
 Use cases

 		
 Instrumenting external code

 		
 Advanced logging

 		
 Advanced debugging

 		
 Testing

 		
 Testing with Ptera

 		
 Test properties

 		
 Test information flow

 		
 Test for infinite loops

 		
 Test trends

 		
 Test caching

 		
 Reference

 		
 Main API

 		
 Probing API

 		
 Overlay API

 		
 Low level API

 		
 List of operators

 		
 ptera.interpret

 		
 ptera.opparse

 		
 ptera.overlay

 		
 ptera.probe

 		
 ptera.selector

 		
 ptera.tags

 		
 ptera.transform

 		
 ptera.utils

_images/marble-1a8e43d967e0923c86f18e853fa7e87e43a808f9.png
y_ v
distinct()

vy v
{3 4)

_images/marble-1a971c0609b22ba1f5d5d63abfc62be378139340.png
—H
—
—-

Yy v vv v _vv v y
[buffer_when()]

© © @

_images/marble-092df87afded0d41cb3c9b7aa533dfd5b3bca776.png
1 2 3 4
v v v v v
finally_action(a)
) 4) 4) 4) 4) 4) 4
1 2 3 4 6 7

_images/marble-12b0f7a870f44770310e457d90a6a1e6c500aee2.png
—o—o—o—uv

L2 L2 L2 L2

take_last_buffer(2)

_images/marble-1d791e0ab4245961cd740c268a2a92fb24396ecf.png
Yy Yy
starmap(add)
v v

_images/marble-2051e2a94e433846e59e2b559e0e65bacac7ad31.png
sole()

_images/marble-1c1361f657a91ebf5ade83dbd9800bfa7ec5e7b5.png
1) (2}) ‘
\O; @ O O
ey (b))
@ ® 0@
vy vy v v
with_latest_from()
) 4) 4

&

_images/marble-1c57db95ece5fc3af60515bb5b99603381d3f000.png

_images/marble-224f5f799ed36630eb603290c5ccedc11ed9caf9.png
Y Y Y
where(b=2)

&

_images/marble-260a783c9881aea25a45f2a643f0ad04aa4af321.png
))]
& \O;

—@—
—H

YV VYV L 2 y VY y YV Vv
[window(open. close)]

A A

|

_images/marble-274eb497c61eca9b0c5d5b1e5a0e07222b2add05.png
L2

y_ v

bottom(n=2)

{0

_images/marble-2ac5743543b7ddb0ba7b7dc3cedacda9de1a73eb.png
(4)
%

3)
S

2)
&

(1)
>

filter(i: i>2)

_images/marble-2c04b5c44b74070176595a3a4e681bd1e8d6fcec.png
window(open)

_images/marble-281c641f8ea3abef9b70fb19d7295b200ebff650.png
v v v v
skip_with_time()
v v
{3 4)

_images/marble-2a04dfbc6e7eaf822fbe38ae7023896bc704e6de.png
v v
start_with(7,8)
v v

_images/marble-3783ceec8ed2d9cdf16e748d7f8c2f8271ddbb2f.png

_images/marble-3f09a5a057c2de3bb200b642e3295f510b010da1.png
—O—O—0—w—

L2 L2

L2 L2

reduce(acc,i: acc+i)

v

(10—

_images/marble-2dcc60783a078d2fa3e925688f6b6740cbb65d36.png
2)

{1

2ip()

_images/marble-327bfb8137982bff9af94de233bb2b589b70ef4c.png
@ 2 @
Yy Yy Yy
where(a)
v v
G @)

_images/marble-45da698d9b059e9fb52b48e83e592327605a35d5.png
(4)
"

)
S

2)
&

(1)
>

zip(a,b,c,b)

_images/marble-479c504797deac7666c2236ff16287b5b001b465.png
Yy Yy Yy Yy
find_index(3)
v

_images/marble-4544dd242d02df82ac059a82701a17b5b31135d4.png
1 2 3
vy v v
concat()
4 Y Y Y Y
1 2 3 6 B

_images/marble-4ff9f21e0687a8c45cd9cdc6350bbe584661a43f.png
(1) (2) (3) o

S 9 © Omy
()) '0) |
O S O 1

Y v v v v v v

merge()
y Y ¥y ¥y oy vy ¥
D—O)—)—C)—C)—@)—C

_images/marble-500cd215f2c580628cf9a7e611f44d42054a0e0a.png
Yy Yy

repeat(3)
v v v
1 2 2

_images/marble-495529f1b8626a1641e59c8045dc3bfe4a46e52b.png
(1) 2)) (4)
> @ S "
Yy Yy Yy Yy

ignore_elements()

_images/marble-4bec5ea503c9f8343c3fec6dda89105a28931cea.png
‘window(3)

s

_images/marble-52e113b590f7fb5e7471c6d56c1829f94703f688.png
(4)
"

)
S

2)
@

(1)
>

map(i: i*2)

_images/marble-50c59c6e10555a1998fa10d51cbd9ffdaba3ac3d.png

_images/marble-52122fe2fd7d5a4bf51af04628f21eb74171ce22.png
Y Y Y
where_any(b)

v
62)

_images/marble-57e895b2baf9d4fe3d4067802334f4ef144153a0.png
(4)
%

3)
S

2)
&

(1)
>

element_at(2)

_images/marble-58fe81f8f4a247bd862f50ae3cc219a98197ff80.png
— OO O-O——

Yy Yy Yy Yy Yy Yy
buffer_with_count(3)

_images/marble-52e4fca35f1720c22c35083a9d2cdc694a20aced.png
—o

—o

—o

O O O
-©0—0—

&

_images/marble-531777319ad55f0b44484e3380596082c25027fc.png
—— o ————

Yy Yy Yy Yy
skip_until_with_time()

_images/marble-69ec5ae5dc2cfac63f972b39a7fb9b7a4f19a2d2.png
©

max()

_images/marble-6b178e548e0f0c5ecff8e62fc2591fb17b9d3973.png
(4)
"

)
S

2)
@

(1)
>

map(i,id: i¥2)

_images/marble-59e02f94169eadf875bb292a59cda555b87d5092.png
L2 L2 L2

single(3)

_images/marble-649f84d747fb71121f2e58a2dd3a2c00bf37e3ed.png
@ ©

Y Y Y
average(scan=2)

o & @

_images/marble-6e08c40414ac4aff5c3c9fcc512aa79bd7635234.png
(4)
%

3)
S

2)
&

(1)
>

dol(i: foo())

_images/marble-e57345367efb65a9a452388af6bfadbbb979b43e.png
L2 L2 L2

take_until_with_time()

_images/marble-6e19e75a07bd399aae57e54367ef89cdf3f4abcb.png

_images/marble-f263d0fbb0af0ae1fdad8f9e5c3f9653fbf31f1d.png
v v v v
take_until(2)

Yy y y

T 2 3

_images/marble-e911a425a8492e32ea772ac02d0773656ddb4f18.png
(1)
S S
Yy Yy Yy
average(scan=True)
v v v
(1) () (3)

_images/marble-f4cfbdab21b5ae2272f5ec6aad9f42d44e04dc39.png
-@

affix(b=x, c=y)

_images/marble-f275ca05c567b536db954d93cc4a27a8309a01d8.png
o)
O

v y_ vy

‘skip_until()

_images/marble-dce15dead801908327ef799bfcdfa63a4c9f958d.png
O—OO—O—©
y v

do_action(i: foo())

D)«

' '
O—>0)

-

_images/marble-d61e3083f22cf0310392c308c1ba7fbbe00d8c77.png
— OO~

L2 L2 L2 L2

take_last_with_time(3)

v

(D

_images/marble-e0cc64db1260f70482180126b622340bc48163ba.png
v v v v v v
group_by()
y y
O '
1
O, ®—~0
2 fa‘\ {

_images/marble-ddf862178779eaa8593df342589be502be49ddbb.png
Y Y Y Y
debounce()
o —6)

_images/marble-e2da2e19412d614c899fa5b6ff0b46b0b28a65f2.png
—0O—O0—0—uH

L2 L2

L2 L2

first(i: i>10, 42)

v

(@)

(@2

_images/marble-e150f5b604c299df12cc07f30c3c4d4816a44204.png
(1) (2) (3) (2)

A A A

L2 L2 L2 L2

take_while_indexed(v, i: v<4 or i<3)

v v
(1) (2)

_images/marble-74f3910edce12fac1a74594adad08937786aea97.png

_images/marble-753724403f4ec050f1e41ae18c0aa6c739db97a9.png
Yy Yy
sample(4)
v v v

_images/marble-7250980f6bdaa9b65a94e9fded8ad1e64e507cbf.png
v

vVyy v

fork join()

_images/marble-745696a3c38caf54674ca4831a80f237d3a54efe.png
L2

L2

single(8,42)

D)«

&

_images/marble-80c2d0fdc2c767f0a81ea312a7dec1b9cf921f0d.png
Y Y
slice(1, 2)

v
{2 3)

_images/marble-81dbcd0cd7a21fb6c1f4939387f5ff16b1556101.png
S A S 1

O—O—0C—0O0—06—0—0
buffer()

& !

@ €3 {

_images/marble-7b6c1e8599749d074746f03a2e29ba534b8e454c.png
{9

_images/marble-7d8e208720017f8eb920b0a29c31b85a1156fda7.png
—o—o—o—o—

Yy Yy Yy Yy
take_while(i: i<3)

(1 2) i

_images/marble-8239818b5b16fe0dd1257d653c34b42e0d963dbb.png

_images/marble-cffe1529783c4bd3518f934f74ac7f8960bd15ed.png
)«

~)«

W)«

_images/marble-c98ccfe24e41b0a6275c872ca31cb7faf6ea1bbd.png
)

Yy Yy
keep(x, y)

v v
L) 53)

B
g

_images/marble-d1b21b1be01b397c21c66f8aea675c3dcf0d8575.png

_images/marble-d14c02dddb2af945932be6a8f5b44425cde47a95.png
O

---»]

catch(a)

_images/marble-7026868b150bc186397e1cda4dff4ff1bf30b8ca.png

_images/marble-915723ed35c180ce5428050d27cb2d4cbfc8ddf1.png
2)
&
Yy

(4}
&
2

3)
S
Yy

filter(i,id: id>2)

_images/marble-96c6bd5e72804426dd0d45e7be6f65a95cfc23bd.png
0G) ()
\ &) O
v v v v v v v
‘group_join()
v v v v
&) @ 3)

_images/marble-86e55845149aaa02237e62b0ba0b70d2fbaf984f.png
() « 3
19, D—C
Q) @) G)
A= A A=
vy v v v v
combine_latest()
) 4) 4) 4
al) a2, 2) €2, =)

_images/marble-8dca4a83325669720b5ee0100ff548f37f73038f.png
— OO O-o-©O——

Yy Yy Yy Yy Yy Yy
buffer_with_time()

{2}

_images/marble-9aae3d37d38bfe67409f48b0b2e47fa1b19cc626.png
v

v

v v

v

sequence_equal()

_images/marble-9ae3e04b8e979d8accefa93939e26a38d0d435bb.png
L2

all(i: i<10)

_images/marble-9829e00890b070583966679ff0055d2470c7f095.png
Yy Yy
skip(2)
v
(3 2)

_images/marble-9a9098a73855ea49525d17a3eae8437882192b92.png
average()

_images/marble-84685da521ceac3a1e3151b469388c793833bd91.png
is_empty()

—_—

_images/marble-84c8bf7c08c782ad854edc424348e0212df9d0d3.png
x1) (@) (G}

@ @ ©

v v v
getitem(x)

v v v

(1)))

_images/marble-ae5183a952d0eb15135cf129cf63a68f11f34e80.png
B1) =)
Y Y Y Y Y
wmap()
v vy
() ® 1)

_images/marble-b0e3c487b07039af5b9dec98727bbaddf099f83d.png
, 3 (3) (4)
y—e O—®
v v v v

time_interval()
v v v
)))

_images/marble-a5f9d54f3ed827712265516535934307683b5e1c.png

_images/marble-ac702793ffd235d9aecfffd4dccce018f409b71c.png
L2 L2

last_or_default(8)

(&—1

_images/marble-b3ff56065e83731d477f51b5fc6003d2fc22a162.png
Join()

&

_images/marble-b15b90a1f22863b59ff1f11838d8d9f7358f38ef.png
) (G} (24)
—O—®@ © @
v v v v
kmerge(scan=True)
v v
1 Y 2

_images/marble-b34c157ccad6cac31836d7d4accd5124cbf7c711.png
(X1,

24)

_images/marble-ff061583c7cbf3a16a4487bcf4369a37d7305e8f.png
3)
S

2)
@

(1)
>

as_(x)

_static/file.png

_static/plus.png

_static/minus.png

_images/marble-f77c57a67c3f6e4edfda0913fbbb99146ad876d1.png
O-0——0O-—C-E——0

y v v y v y v v
group_wrap()
) 4) 4
O O '

|

_images/marble-f6ff9e502837f3c34a2c23a40437f3ab7ecc9835.png
(1) 3) i
> S @
Yy Yy Yy

element_at(6, a)

_images/marble-f8ff77b2735db075f91ed29f2fe3fc0b1c918d49.png
(4)
"

)
S

2)
&

(1)
>

firsti: i>1)

_images/marble-f87bbff3e9ad64d121cc9d2ab3d1aacd4d9015c8.png

_images/marble-fc13941b8bf4aac2e5a18dbb00abe10e1a710e5e.png
)«

_images/marble-9d1412bca63017f8545dfdf42baf36e766ddce27.png
v v v v
partition(even)
v v
Q) G)
A= o
y y
) ()

A
g
A
S

_images/marble-a3a11956650c120c73d13399527412e361144e31.png
©

min()

_images/marble-9c9ad906399c982a7ca5eb85fd1ce3d2c4ab39a5.png
® ® :
—@—

—0

YY YY v v vy v Vv v
[buffer_toggle()]

A=

